
US008438351B2

(12) Ulllted States Patent (10) Patent N0.: US 8,438,351 B2
Chen et a]. (45) Date of Patent: May 7, 2013

(54) BINARY LEVEL UPDATE OF COMPRESSED (58) Field of Classi?cation Search None
READ-ONLY FILE SYSTEMS See application ?le for complete search history.

(75) Inventors: Samson Chen, Irvine, CA (U S); Marko (56) References Cited
Slyz, San Diego, CA (US); LaShaWn

glcGhee, i211 Diego, %A (US%A (Us) U.S. PATENT DOCUMENTS
iovanni otta an iego ' .

_ _ ’ ’, ’ 6,035,068 A * 3/2000 Ima1 382/232

Brlall o’Nelll, SaI_1__J11aI1 CaPISIFaHO, CA 2007/0157001 Al* 7/2007 RitZau 711/170
(US); Bill Liu, Beljlng (CN); Li Wen, 2010/0325523 A1 * 12/2010 Slyz et al. 714/773
Beijing (CN); Ben-Tong Sun, Beijing
(CN) OTHER PUBLICATIONS

_ Shapira, Dana & Storer, James A., “In Place Differential File Com
(73) Asslgnee: Hewlett-Packard Development pression”; The Author 2005, Published by Oxford University Press

Company’ LP" Houston’ TX (Us) on behalf of the British Computer Society; Advance Access pub

lished on Aug. 26, 2005; The Computer Journal vol. 48, No. 6, 2005,
pp. 677-691.

Burns, Randal C. & Long, Darrell D.E., “In-Place Reconstruction of
Delta Compressed Files”; Dept of Computer Science, IBM Almaden
Research Center, randal@almaden.ibm.com; Dept of Computer Sci
ence, Univ of California, Santa Cruz, darrell@cs.ucsc.edu; l2 pgs.

- _ Anonymous, Wikipedia, the free encyclopedia, “Binary delta com
(22) PCT Flled' Jsnzi6’ 1 47 pression”; XP-002532765; Internet Article; May 9, 2007; http://

(n er ') enwikipedia.org/W/Index.php?title:Binaryideltaicompression
&o1did:l29402357; 1 pg.

(86) PCT N05 PCT/Us2008/066167 International Search Report and Written Opinion of the International
§ 371 (0X1) Searching Authority; dated Jul. 15, 2009.

(2), (4) Date: Jan. 3, 2011

* Notice: Sub'ect to an disclaimer, the term of this J y
patent is extended or adjusted under 35
U.S.C. 154(b) by 430 days.

(21) Appl. N0.: 12/663,428

* cited by examiner

(87) PCT Pub' NO; W02008/154411 Primary Examiner * EdWard Dudek, Jr.

PCT Pub- Date? Dec- 18, 2008 Assistant Examiner * Sean D Rossiter

(65) Prior Publication Data (57) ABSTRACT

US 201 1/0107046 Al May 5, 201 l A method and computer-readable memory device that enable
processing of a ?rst memory image comprising a plurality of
compressed sub-blocks and uncompressed sub-blocks to pro

(60) Provisional application No. 60/933,608, ?led on Jun. duce a second memory image comprising contents ofthe ?rst

Related US. Application Data

6, 2007- memory image arranged as a plurality of memory blocks. The
memory blocks of the second memory image may be inde

(51) Int- Cl- pendently decompressible, to enable more e?icient updating
G06F 13/ 00 (2006-01) of an electronic device.

(52) US. Cl.
USPC 711/162; 707/693; 7ll/El2.084 10 Claims, 9 Drawing Sheets

nemmm-mmm - HM mpIwII-? eemeri er- rim memry lmagl i- -
eempmme lubrhlmk i-eermrm mulnirii mllhll wan‘ m e emmm memeiy

em M e mm: mommy imm

|i me slza Mme wmprelsed uub—block is greater men me
rememim; eveiieeie epeee m the wrrem memory elm DHTIB
second memery image, ereeie mam content more eempreeeeu

m euemieek e irei eempreeeee memory norm, and lime mu ofthe
iimi wmprelse? memory portion 1; ieu me“ me eiiii remaining
available epeee, ereeie e nemeempreeeee memory portion in ?ll
me am remaining available epeee in me current memory block 01

the eeeemi memery imege

creeie e second new eempreeeen sub-black imm umieea eeriiem
m eiihe eempreeeeu euiwluek for emerge in ii men memory mm In

me eeeeriu memory [mags eei-eemie me bound with: next
memory block and me eurrem memoly block, ir 1m 11 eemem ei

me eempreeeee sub-block remeime

US. Patent May 7, 2013 Sheet 1 of9 US 8,438,351 B2

167
s||v| j

105“
169 - - Appllcatlon 1 143 09\’\ ; Software \J\127

Device “TEQJQZ?” o|v| Client \~F\163
Management

Server 165 , Update

1485 ; Package \I‘116
Provlslonlng <_ _> RAM Read-Only \ r418

Server File System
\A

129 153 166 Provisioning
Client \~"\123

Download <_ >
Server Hand-off

\/\ Module \‘r‘121

151 155 Processor OS _,-\119

Customer (3 .
Care Server <- > Flrmware \‘r\117

\ Update

Non-Volatile $111
Memory

Electronic Device

6
FIG. 1A 107

US. Patent May 7, 2013 Sheet 2 of9 US 8,438,351 B2

1L0

180 w Electronlc
devlce

176

\,\

Processor

172
\f K 174
"\ I /

178 First Second
Memory Memory
Image Image

Memory

FIG. 1B

US. Patent May 7, 2013 Sheet 6 019 US 8,438,351 B2

V2

520

514 518 /

512 / /
......... --> ~

FIG. 5

US. Patent

'03 O O

612

610

May 7, 2013 Sheet 7 0f 9

620

FIG. 6

US 8,438,351 B2

622

624

US. Patent May 7, 2013 Sheet 8 of9 US 8,438,351 B2

m

83
718

B
722

S2 / 716 %

S1

710 / 714

A
724

FIG. 7

US. Patent May 7, 2013 Sheet 9 of9 US 8,438,351 B2

812 \ Determine whether a next unprocessed portion of a ?rst memory image is a
compressed sub-block larger than remaining available space in a current memory

block of a second memory image

l
814 Copy the compressed sub-block to the current memory block in the second memory
\ image, if a size of the compressed sub-block is less than or equal to the remaining

available space in the current memory block of the second memory image

i
If the size of the compressed sub-block is greater than the

remaining available space in the current memory block of the
second memory image, create from content of the compressed

sub-block a ?rst compressed memory portion, and if the size of the
?rst compressed memory portion is less than the still remaining
available space, create a non-compressed memory portion to ?ll
the still remaining available space in the current memory block of

the second memory image

l
Create a second new compressed sub-block from unused content
of the compressed sub-block for storage in a next memory block in
the second memory image adjacent to the boundary of the next
memory block and the current memory block, if unused content of

the compressed sub-block remains

818 \

820

memory image
rocessed'?

FIG. 8

US 8,438,351 B2
1

BINARY LEVEL UPDATE OF COMPRESSED
READ-ONLY FILE SYSTEMS

RELATED APPLICATIONS

The present application makes reference to, claims priority
to, and claims bene?t of US. Patent Application Ser. No.
60/933,608, entitled “BINARY-LEVEL UPDATE OF COM
PRESSED READ-ONLY FILE SYSTEMS”, ?led Jun. 6,
2007, the complete subject matter of Which is hereby incor
porated herein, in its entirety.

BACKGROUND OF THE INVENTION

Embedded electronic devices sometimes have ?le systems
that are stored in ?ash-type non-volatile memory. It can be
useful to update the information in these ?le systems to, for
example, ?x bugs in code stored in the memory.
An original version of a ?le system may be referred to as

V1, and the updated version asV2. In some cases, much of V2
is similar or identical to V1 . In this situation, an update may be
done by sending just the information that changed betWeen
V1 and V2. A tool that may be referred to as a “generator”
may accept V1 and V2 as inputs, and may produce informa
tion used in the electronic device to covert or transform ver
sion V1 into version V2. This information may be stored in a
?le referred to herein as an update package (U P), Which may
be sent to all of the embedded electronic devices that are to be
updated. Each of these electronic devices contains a program
referred to herein as an “update agent” (UA), Which applies
the UP to version V1, thus converting V1 to produce version
V2.

Further limitations and disadvantages of conventional and
traditional approaches Will become apparent to one of skill in
the art, through comparison of such systems With a represen
tative embodiment of the present invention as set forth in the
remainder of the present application With reference to the
draWings.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1A is a perspective block diagram of an exemplary
netWork that supports remote update of non-volatile memory
of an electronic device such as, for example, a mobile handset
or personal digital assistant, in accordance With a representa
tive embodiment of the present invention.

FIG. 1B is a perspective block diagram of an exemplary
computer system comprising a processor that accesses a ?rst
memory image to produce a second memory image arranged
as a plurality of independently decompressible memory
blocks for storage in the memory of an electronic device that
may correspond to, for example, the electronic device of FIG.
1A, in accordance With a representative embodiment of the
present invention.

FIG. 2 is a block diagram of an exemplary ?le system in
Which a representative embodiment of the present invention
may be practiced.

FIG. 3 shoWs a block diagram illustrating an exemplary
compressed ?rmWare memory layout on the left, and an
exemplary compressed ?le system memory layout on the
right, in accordance With a representative embodiment of the
present invention.

FIG. 4 shoWs a block diagram illustrating an exemplary
compressed ?ash memory block on the left, and a decom
pressed version on the right, in accordance With a represen
tative embodiment of the present invention.

20

25

30

35

40

45

50

55

65

2
FIG. 5 shoWs a block diagram illustrating decompression

and recompression of sub-blocks of memory, in accordance
With a representative embodiment of the present invention.

FIG. 6 shoWs a block diagram illustrating exemplary
operation of the softWare program used for processing ROFS
images described above for a single ?ash memory block, in
accordance With a representative embodiment of the present
invention.

FIG. 7 shoWs a block diagram illustrating exemplary
operation of the softWare program used for processing ROFS
images, in accordance With a representative embodiment of
the present invention.

FIG. 8 shoWs a ?owchart for an exemplary method of
processing a ?rst memory image comprising a plurality of
compressed sub-blocks and uncompressed sub-blocks to pro
duce a second memory image comprising contents of the ?rst
memory image arranged as a plurality of memory blocks, in
accordance With a representative embodiment of the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

Aspects of the present invention relate generally to the
updating of memory in electronic devices, and more speci?
cally, to methods and systems supporting processing of
updates for ?rmWare, softWare, con?guration parameters and
?le systems in memory of an electronic device such as, for
example, non-volatile FLASH-type memory. While the fol
loWing discussion focuses primarily on mobile electronic
devices such as, for example, a mobile handset, a cellular
phone, a personal digital assistant, a pager, and a handheld
personal computer, this is by Way of example and not by Way
of speci?c limitations of the present invention. The teachings
contained herein may also be applicable to a variety of other
electronic devices having a processor and memory containing
softWare, ?rmWare, con?guration information, data ?les, and
the like, for Which updating of memory contents may be
desirable.

Representative embodiments of the present invention may
be employed during updates using Wired or Wireless commu
nication links such as, for example, a public sWitched tele
phone netWork, a Wired local or Wide area netWork, an intra
net, the Internet, and Wireless cellular, paging, local area,
personal area, and short range netWorks such as those referred
to as WiFi, IEEE 802.11a/b/g/n compatible netWorks, the
short range Wireless technology knoWn as Bluetooth, and
similar types of communication links.

In a representative embodiment of the present invention,
information for updating memory in an electronic device such
as those described above is communicated using, for
example, an update package comprising a set of instructions
executable by ?rmWare and/or softWare in the electronic
device to transform or convert an existing version of softWare,
?rmWare, and/or data in the electronic device into a neW or
updated version of the softWare, ?rmWare, and/or data. In
some representative embodiments, such an update package
also contains metadata related to the update.
A representative embodiment of the present invention uses

a method that may be referred to as “delta compression” to
perform an update. The UP comprises a sequence of instruc
tions generated by a “generator” that are used by an “update
agent” in an electronic device to recreate an updated version
V2 by converting or transforming version V1. A number of
different types of instructions may be contained in the update
package. One instruction type is the “copy” instruction,
Which moves identical bytes from version V1 into version V2.
For example, if a sequence of 10,000 consecutive bytes is

US 8,438,351 B2
3

common to both version V1 and version V2, then the genera
tor can issue a single copy instruction, just a feW bytes long,
to move all 10,000 bytes into version V2. Other types of
instructions may be used to explicitly list bytes to insert into
versionV2. The generator canuse these other types of instruc
tions for material that cannot be e?iciently encoded using the
copy command. For example, short sequences of bytes may
be more e?iciently encoded by sending them verbatim
because of the overhead involved With the use of the copy
instruction.

Flash-type non-volatile memory (Where V1, and later V2,
may be stored) is organiZed into blocks, Which may be the
smallest Writable units of data. For some types of ?ash
memory, blocks are also the smallest readable unit of data.

In a representative embodiment of the present invention,
the generator determines an order in Which to update ?ash
memory blocks. In some representative embodiments, the
generator determines an order in Which a ?ash block is
updated after the material in it is no longer needed to create
other portions of version V2. Otherwise, updating a part of
?ash memory containing version V1 can cause content
needed in the reconstruction of other parts of versionV2 to no
longer be available. An element that referred to herein as an
“order manager” can be used to determine an optimal order
for a particular version V1 and version V2.

Small changes in executable code (that may be referred to
herein as “primary changes”) may propagate to cause many
other changes (that may be referred to herein as “secondary
changes”). For example, if there are program jumps from
locations in the ?rst portion to a second portion of a softWare/
?rmware function in version V1, and the version of that
software/?rmware function in V2 has additional bytes
inserted betWeen its ?rst and second portions, then most or all
of the offsets of the jumps in the second portion change. This
can result in many changes/differences betWeen the bytes of
version V1 and version V2. In some representative embodi
ments of the present invention, preprocessing is employed to
describe all of those changed bytes in a compact Way.
One function of the generator is to produce small UPs,

because transmission time/bandWidth may be limited, and an
end-user may be Waiting for an update to complete. The
generator and update agent (UA) together support fault-tol
erance, so that the electronic device recovers gracefully and
Without corruption of memory contents if the update process
is interrupted.

For example, if the battery of an electronic device is
exhausted While the UA is Writing version V2 to ?ash
memory, then the part of version V1 that the UA overWrote
Will no longer be available When the user recharges the battery
and resumes the update process. Because this part of version
V1 may have been used by the UA to create version V2 from
version V1 and the UP, in the case of a read-only ?le system,
there may be no Way in the prior art to continue the update
process. One example of a read-only ?le system is “squashfs”
created by Phillip Lougher (see http://squashfs.sourcefor
ge.net/). The electronic device may be left in an unusable
state. HoWever, a generator in accordance With a representa
tive embodiment of the present invention compensates for
such a lack of availability. For example, in a representative
embodiment of the present invention, the generator detects
that a part of version V1 is not available at a particular time
during the update process, and the order manager may com
pensate by not referencing the unavailable material.

FIG. 1A is a perspective block diagram of an exemplary
netWork 105 that supports remote update of non-volatile
memory of an electronic device 107 such as, for example, a
mobile handset or personal digital assistant, in accordance

20

25

30

35

40

45

50

55

60

65

4
With a representative embodiment of the present invention.
The electronic device 107 may, for example, comprise a cel
lular phone, a personal digital assistant (PDA), a pager, a
handheld personal computer (PC), and/ or the like. The elec
tronic device 107 can support a number of features and/or
applications that may contain softWare/?rmWare errors that
need to be corrected, or that may provide additional features/
bene?ts by updating the softWare/?rmWare. In one represen
tative embodiment, the electronic device 107 can be used to
request updates to softWare/?rmWare via a customer care
server 157 either directly, using a broWser in the electronic
device 107, or via a customer service representative (CSR). A
CSR may, for example, provide service to the customer using
the electronic device 107 by retrieving, as necessary, one or
more diagnostic management objects (MOs) stored in
memory of the electronic device 107, and by transmitting to
the electronic device 107 from a remote server, update infor
mation in the form of, for example, one or more update
packages. In a representative embodiment of the present
invention, such update packages comprise instructions
executed/interpreted by softWare/?rmWare code in the elec
tronic device 107 that convert or transform a ?rst version of
softWare/?rmWare to a second version of softWare/?rmWare,
in the electronic device 107. In some representative embodi
ments, the update package(s) also contain metadata and
checksum information.
As shoWn in the illustration of FIG. 1A, the netWork 105 in

one representative embodiment of the present invention com
prises the electronic device 107, a device management (DM)
server 109, a provisioning server 129, a customer care server

157, and a doWnload server 151. Although not illustrated in
FIG. 1A, a representative embodiment of the present inven
tion may also comprise other application servers such as, for
example, a diagnostics server, and a self-care Website/portal.
The electronic device 107 of FIG. 1A is able to communicate
With the DM server 109, the doWnload server 151, the cus
tomer care server 157, and the provisioning server 129 via
communication interface 169, and communication paths 143,
153, 155 and 145, respectively. Although the communication
paths 143, 153, 155, 145 are illustrated as being separate
paths betWeen the electronic device 107 and their respective
servers, this is only for purpose of illustration, and is not a
speci?c limitation of a representative embodiment of the
present invention. In some representative embodiments, the
communication paths 143, 153, 155, 145 may be combined
into one or more paths that may comprise Wired or Wireless
communication paths such as, for example, a local area net
Work, a public sWitched telephone netWork, a Wireless per
sonal, local or Wide area netWork, and a cellular or paging
netWork, to name only a feW possibilities. While not explicitly
shoWn in FIG. 1A, one of ordinary skill in the relevant art Will
recogniZe that communication interface 169 is compatible
With the selected type(s) of communication paths 143, 153,
155, 145.
As illustrated in FIG. 1A, an electronic device in accor

dance With one representative embodiment of the present
invention comprises a processor 166, random access memory
(RAM) 165, and non-volatile memory (NVM) 111. The
NVM 111 may comprise, for example, NAND or NOR type
?ash memory or other suitable type of NVM. The NVM 111
may contain a number of softWare/?rmWare code compo
nents of the electronic device 107 including, for example,
application softWare 127, a device management (DM) client
163, an update package/update package array 116, a read
only ?le system (ROFS) 118, a provisioning client 123, a
hand-off module 121, an operating system (OS) 119, ?rm
Ware 117, and one or more update agent(s) 115. Additional

US 8,438,351 B2
5

softWare/?rmWare code components may also be present in
the RAM 165 and NVM 111. The term “code” may be used
herein to represent one or more of executable instructions,
operand data, con?guration parameters, and other informa
tion stored in memory of the electronic device 107, and the
term “update package catalog” may be used interchangeably
With the term “update package array” to refer to received
update information that comprises multiple update packages.
The electronic device 107 may also comprise interface cir
cuitry (not shoWn) to enable operable connection of a sub
scriber identity module (SIM) card 167, that may be
employed in accordance With aspects of the present invention
described later in this document.

In a representative embodiment of the present invention, an
electronic device such as, for example, the electronic device
107 ofFIG. 1A processes an update package (e.g., the update
package/update package array 116) delivered by a remote
server such as, for example, the doWnload server 151, to
update ?rmWare/softWare, data and con?guration informa
tion in memory of the electronic device 107. Such an update
package comprises update information including, for
example, metadata describing an update, checksums, and
instructions executable by one or more update agents such as,
for example, the update agent 115 of FIG. 1A. In a represen
tative embodiment of the present invention, the update agent
115 processes a set of executable instructions, Which are used
as a compact means to encode differences betWeen an exist
ing/?rst version and updated/second version of ?rmWare,
softWare, data, and/or con?guration parameters in the elec
tronic device 107. The executable instructions may be
assembled into one or more update packages to be transmitted
to an electronic device for use in updating memory of the
electronic device. In a representative embodiment of the
present invention, one or more update agent(s) 115 in the
electronic device process respective portions of the execut
able instructions from an update package to convert/trans
form corresponding portions of an existing/?rst version of
code in memory of the electronic device 107 to portions of an
updated/second version of code. In some embodiments, the
electronic device 107 receives provisioning information
from, for example, the device management server 109, the
customer care server 157, and/or the provisioning server 129
to ?x con?guration problems or recon?gure softWare and
hardWare.

In addition to those elements described above, the elec
tronic device 107 may comprise a doWnloaded diagnostic
client (not shoWn) that facilitates remote diagnosis, and a
traps client (not shoWn) that facilitates the setting of traps and
retrieving of collected information. In such representative
embodiments, the DM client 163 of the electronic device 107
interacts With the DM server 109, the diagnostic client, and/or
the traps client, to receive DM commands from the DM server
109 and to implement them in the electronic device 107. The
doWnload server 151 is employed to doWnload ?rmWare and
softWare updates (e.g., update information in the form of, for
example, update packages). The doWnload server 151 may
also be used to doWnload neW ?rmWare/softWare such as, for
example, the diagnostics client mentioned above, Which can
then be installed and activated in the electronic device 107.
As described brie?y above, an electronic device in accor

dance With a representative embodiment of the present inven
tion (e.g., electronic device 107) receives update information
(e.g., an update package) for processing by one or more
update agents (e.g., update agent 115) to convert/transform
softWare (e.g., application softWare 127) and/or ?rmWare
(e. g., ?rmWare 117) to produce updated softWare/?rmWare in
the electronic device. In some representative embodiments of

20

25

30

35

40

45

50

55

60

65

6
the present invention, the update agent 115 may comprise
multiple update agents, each of the update agents appropri
ately arranged to process different types of update informa
tion for updating different types/formats of softWare, ?rm
Ware, user data, and con?guration parameters in the memory
of the electronic device 107. In such a representative embodi
ment, each of the update packages received can be processed
in the electronic device by an appropriate one of the update
agent(s) 115 to update an associated type of information in the
memory of the electronic device 107.

Ordinary ?le systems have the ability to create, modify, and
delete individual ?les. This makes updating ?les relatively
straightforward, since the UA can modify one ?le at a time,
Without regard for the other ?les. Some ?le systems, hoWever,
are “read-only” ?les systems (ROFS), meaning that they do
not easily alloW for individual ?les to be added, deleted, or
modi?ed. These ?le systems can be useful for storing ?les
(e.g., system ?les in an OS) that don’t need to be updated
often. Furthermore, read-only ?le systems are often orga
niZed in the most compact Way, With the use of simpli?ed data
structures and compression. For example, there may be no
Way to add 100 bytes to the end a ?le Without moving the ?les
that folloW it.

FIG. 1B is a perspective block diagram of an exemplary
computer system 170 comprising a processor 176 that
accesses a ?rst memory image 172 to produce a second
memory image 174 arranged as a plurality of independently
decompressible memory blocks for storage in the memory of
an electronic device 180 that may correspond to, for example,
the electronic device 107 of FIG. 1A, in accordance With a
representative embodiment of the present invention. The
illustration of FIG. 1B shoWs a ?rst memory image 172 that
may be a memory image produced by, for example, a manu
facturer of the electronic device 107, or a third party softWare
developer. The ?rst memory image 72 may contain ?rmWare
and/or a read-only ?le system. In one representative embodi
ment of the present invention, the ?rst memory image 172 is
a copy of non-volatile memory of an electronic device such
as, for example, the NVM 111 of the electronic device 107 of
FIG. 1A. Updating of the ?rst memory image 172 using, for
example, a device management server such as the DM server
109 of FIG. 1A may be enabled by processing the ?rst
memory image 172 to produce a second memory image 174
arranged as a plurality of memory blocks that are decom
pressible. The term “independently decompressible” is used
herein to mean that one memory block may be decompressed
Without decompressing another memory block. A ?rst or
original version of a memory image produced in this manner
may be processed along With a second or updated version of
the memory image by a tool knoWn herein as a generator,
Which may correspond to the generator described herein, to
produce update information for updating memory in an elec
tronic device such as the electronic device 107 of FIG. 1A By
arranging the second memory image 174 as a plurality of
independently decompressible blocks of memory using a rep
resentative embodiment of the present invention, later updat
ing of memory in an electronic device such as, for example,
the NVM 111 of the electronic device 107 of FIG. 1A, is made
more ef?cient, and the siZe of the update information pro
duced by a generator of update information and used to
update the electronic device 107, is made more compact.
Details of a process that uses a ?rst memory image to produce
such a second memory image are provided beloW.

FIG. 2 is a block diagram of an exemplary ?le system in
Which a representative embodiment of the present invention
may be practiced. The left side of FIG. 2 illustrates an exem
plary “original” version V1 210 of a ?le system With three

US 8,438,351 B2
7

?les f1 212, f2 214, f3 216, While the right side of FIG. 2
illustrates an exemplary “new” version V2 220 of the ?le
system. As illustrated in FIG. 2, the ?les f2 214, 224 and f3
216, 226 are unchanged, but are moved up in memory to
accommodate bytes added to the end of ?le f1 212 shoWn as
f1 222.
One approach to update a read-only ?le system (ROFS) is

to have the UA create an entire neW ?le system image holding
all of the ?les in version V2, and the Write it to ?ash memory.
This may be overly time consuming, if only a small part of the
?le system has changed.

To provide fault tolerance, an electronic device may keep a
copy of version V1 210 available until version V2 220 is
safely Written to non-volatile memory. Unfortunately, there is
normally not enough room in ?ash memory of embedded
devices to alloW this.
A representative embodiment of the present invention pro

vides a method to e?iciently update ?les in-place. The term
“in-place” may be used to mean that the UA gradually over
Writes version V1 210 With version V2 220, While still being
fault tolerant. Also, a method in accordance With a represen
tative embodiment of the present invention does not involve
recreating parts of the ?ash memory that don’t change. The
method deals With complications arising from compression,
Which is often used With read-only ?le systems.

In a representative embodiment of the present invention,
the generator and UA have interface layers that decompress
and compress each ?ash memory block When it is read and
Written, respectively. The bulk of the generator and UA can be
unaWare of the use of compression, and can be similar to a
generator/UA used for regular ?rmWare updates (i .e., updates
of non-compressed ?les). To simplify the update process and
make the UP smaller, the ?rmWare may be compressed so that
each ?ash block may be decompressed and compressed inde
pendently, i.e., Without reference to other ?ash blocks.

In some representative embodiments of the present inven
tion, each ?ash memory block for compressed ?rmWare com
prises a single, contiguous region of compressed data. The
region of compressed data may be folloWed by a region of
padding bytes up to the ?ash memory block boundary. In
contrast, each ?ash memory block for a compressed ROFS
can potentially have many independent regions of com
pressed data, Which can be separated by non-compres sed data
or by padding bytes.

FIG. 3 shoWs a block diagram illustrating an exemplary
compressed ?rmWare memory layout 310 on the left, and an
exemplary compressed ?le system memory layout 320 on the
right, in accordance With a representative embodiment of the
present invention. The left side of FIG. 3 shoWs three ?ash
memory blocks 312, 314, 316 containing compressed ?rm
Ware. Each ?ash memory block of the compressed ?rmWare
contains a single region of compressed data. The right side of
FIG. 3 shoWs three ?ash memory blocks 322, 324, 326 con
taining parts of a compressed ROFS. Each ?ash memory
block of the compressed ROFS contains several independent
regions 32811 through 328g of compressed data that may be
separated by uncompressed data. Each compressed or
uncompressed region of a ROFS may be referred to as a
“sub-block”. The more complicated structure of compressed
ROFS ?ash memory blocks as compared to blocks holding
compressed ?rmWare causes the interface layers that com
press and decompress each ?ash memory block to be more
complicated than those for handling compressed ?rmWare.
For example, if a ?ash memory block contain the folloWing
three sub-blocks:

1. a compressed sub-block A,
2. an uncompressed sub-block B,

20

25

30

35

40

45

50

55

60

8
3. another compressed sub-block C,

then the decompression function may determine Where these
sub-blocks begin and end. Then, in an output buffer, the
decompression function may put the folloWing:

1. the decompressed version of sub-block A, immediately
folloWed by

2. the uncompressed sub-block B, immediately folloWed
by

3. the decompressed version of sub-block C.
FIG. 4 shoWs a block diagram illustrating an exemplary

compressed ?ash memory block V1 410 on the left, and a
decompressed version V2 420 on the right, in accordance
With a representative embodiment of the present invention. As
can be seen in the illustration of FIG. 4, sub-blocks A 412 and
C 416 increase in siZe When decompressed to form sub
blocks A 422 and C 426, respectively. Sub-block B 414 is
simply copied to form sub-block B 424. A compression func
tion to reverse this decompression process is not as straight
forWard, and is described beloW.
A representative embodiment of the present invention

makes speci?c accommodations for compressed ROFS
images that are not involved in compressed ?rmWare updates.
In the folloWing discussion, the output of the decompression
function applied to a ?ash memory block Will be referred to as
the “expanded version” of the ?ash memory block. In addi
tion, the compression algorithm used for each compressed
sub-block Will be referred to as the “underlying compression
algorithm”. For example, in some representative embodi
ments of the present invention, the underlying compression
algorithm might be a compression algorithm such as used by,
for example, “Zlib”, created by Jean-loup Gailly and Mark
Adler (see http://WWW.Zlib.net).
The compression function in a representative embodiment

of the present invention employs “structure data” to operate.
The sequence of bytes corresponding to an expanded version
V2 ?ash memory block is not su?icient to determine Where
the different sub-blocks begin and end. Some of the sub
blocks may be compressed, and some may simply be copied
over. A representative embodiment of the present invention
stores this extra information in the form of a map. This infor
mation may be referred to herein as “structure data” or “meta
data”, and indicates to Which sub-block each byte in the
expanded version belongs. For example, such a map might
indicate that bytes 1 to 500 of the expanded version belong to
compressed sub-block A and that bytes 501 to 530 belong to
an uncompressed sub-block. Additional detail on hoW struc
ture data is produced from a ?ash memory block is given
beloW.

In one representative embodiment of the present invention,
the generator includes in the UP the structure data for each
version V2 ?ash memory block. A second representative
embodiment of the present invention, hoWever, produces
smaller UP results. In such a representative embodiment of
the present invention, the UA creates structure data in the
folloWing manner:

a) Produce structure data for the original version V1 ?ash
memory block. This is discussed further beloW.

b) Write the produced structure data in a standard format at
the beginning of the expanded version of the ?ash
memory block.

c) Update this Written structure data to version V2 using
information that the generator puts in the update pack
age. This canuse the delta compression that the UA uses.

A smaller UP is produced by the second representative
embodiment of the present invention because the version V1
and version V2 structure data is most likely similar, resulting
in a compact encoding in step (c).

US 8,438,351 B2

A representative embodiment of the present invention uses
a parsing/decompression function for ?ash memory blocks,
Which may be referenced by a function call such as, for
example, “blockcomp_decompress()”. In a representative
embodiment, such a parsing/decompression function oper
ates by advancing a pointer through the bytes of the ?ash
memory block, creating different kinds of sub-blocks
depending on the values of the bytes located at the ?ash
memory location identi?ed by the pointer. If the bytes begin
ning at the ?ash memory location identi?ed by the pointer are
a header that the underlying compression program put in, then
the parsing function determines Whether the folloWing data is
decompressible. If the folloWing data is decompressible, the
parsing/ decompression function creates a decompressed sub
block With that decompressed data. If, instead, the bytes
beginning at the location identi?ed by the pointer are part of
a region ?lled With a single value, then the parsing/decom
pression function of one embodiment of the present invention
creates a gap sub-block that records the siZe of the region, but
not its bytes. Otherwise, such a representative embodiment of
the parsing/decompression function creates a raW sub-block
that contains the bytes themselves. The parsing/decompres
sion function then advances the pointer in the ?ash memory
block to the end of the data that corresponds to the sub-block,
and repeats the process.
A representative embodiment of the present invention

determines Whether a sub-block that can be decompressed,
should be decompressed. In a representative embodiment of
the present invention, the generator determines both that the
sub-block is decompressible, and that the decompressed data
recompresses to match the original bytes of the compressed
sub-block. If the recompressed data does not match the origi
nal bytes, then that sub-block is included as a raW sub-block,
rather than as a decompressed sub-block. Such a problem
might occur if, for example, the generator/UA uses a more
recent (underlying) compressor version than the compressor
used to originally create the sub-block. In one representative
embodiment of the present invention, the generator/UA’s
decompressor function is backWard compatible With older
compressor functions of the same type, although the com
pressor function might produce a different compressed rep
resentation.

FIG. 5 shoWs a block diagram illustrating decompression
514 and recompression 518 of sub-block 512 of memory V2
510, in accordance With a representative embodiment of the
present invention. In a representative embodiment of the
present invention, the decompression 514 and recompression
518 of a sub-block 512 produces a copy 520 of the original
version of the sub-block 512. In some representative embodi
ments of the present invention, the UA runs the same test. This
approach may, hoWever, sloW the expansion process. To pro
vide faster processing, some representative embodiments of
the present invention include additional information in the UP
to ?ag each decompressed sub-block that cannot be re-com
pressed and match the original block contents. In such
embodiments, the UA checks for a ?ag before trying to
decompress each sub-block.
Some representative embodiments of the present invention

employ “per-?le preprocessing”. In per-?le preprocessing,
each executable ?le in a compressed ?le system is prepro
cessed With a method similar to that used for ?rmWare, and
the information used to preprocess it (e. g., a nodelist and
?lters) may be stored separately in the UP. In one represen
tative embodiment of the present invention, the generator
uses information about Where pairs of corresponding ?les are
located in version V1 and version V2. This information may
reside in a structure that may be referred to herein as the

20

25

30

35

40

45

50

55

60

65

10
“rofsmap”. In a representative embodiment of the present
invention, the rofsmap is generated by parsing the ?le-system
structure and associating each ?le in version V2 With a cor
responding ?le in version V1. In one representative embodi
ment of the present invention, a ?le in version V2 can be
associated With a ?le in version V1 that has the same name.
Such a ?le does not alWays exist such as, for example, in the
case of ?les that have been added in version V2. Other rep
resentative embodiments of the present invention employ
different matching criteria.
The rofsmap in a representative embodiment of the present

invention may be less detailed than the structure data
described above, but it associates data in versionV1 With data
in version V2, Which the exemplary structure data described
above may not do. The UA uses the rofsmap to determine
Which preprocessor information to use for each copy, so the
rofsmap is encoded in the UP. In some representative embodi
ments of the present invention, the UP also contains certain
preprocessing information (e.g., a global nodelist) that is
shared for all of the ?les. The generator and UA of such
embodiments use this preprocessing information to predict
pointers to prelinked global symbols in executable and link
format (ELF) ?les. A representative embodiment of the
present invention can employ the global nodelist in additional
Ways.
A representative embodiment of the present invention

enables the creation and use of independently decompressible
?ash memory blocks. Such limitations require that each ?ash
block be independently decompressible, and present a prob
lem because With many compression methods, decompres
sion cannot start from arbitrary points in the compressed
stream. Compressed sub-blocks that cross a block boundary
betWeen a ?rst block of ?ash memory and a second block of
?ash memory (i.e., “crossing sub-blocks”) may not be
decompressible if the ?rst block of ?ash memory is not avail
able.

In one representative embodiment of the present invention,
a ROFS image is processed by, for example, a softWare pro
gram, to produce a neW image. The neW image is then stored
into ?ash memory. The softWare program adjusts each cross
ing sub-block, as needed, so that the sub-block is decom
pressible from the ?ash block boundary, alloWing the update
to proceed. The program also preserves the decompressibility
of the crossing sub-blocks, Which alloWs, for example, an
unmodi?ed ?le system driver in the operating system (OS) of
an embedded device to still read the crossing sub-blocks.

FIG. 6 shoWs a block diagram illustrating exemplary
operation of the softWare program used for processing ROFS
images described above for a single ?ash memory block, in
accordance With a representative embodiment of the present
invention. A representative embodiment of the present inven
tion produces a crossing sub-block 620 that is decompressible
both from its beginning (A 624), and from Where it crosses a
?ash block boundary (B 622) betWeen ?ash memory blocks
610 and 612. The method used for adjusting crossing sub
blocks depends on the underlying compression algorithm.
For example, in one representative embodiment of the present
invention that can be used With an “LZ77”-type compressor,
this is done by partitioning the raW data for the crossing
sub-block into three partsisl, s2 and s2, and compressing
them differently.

FIG. 7 shoWs a block diagram illustrating exemplary
operation of the softWare program used for processing ROFS
images, in accordance With a representative embodiment of
the present invention. The illustration of FIG. 7 shoWs adjoin
ing ?ash blocks 710, 712 and crossing sub-block 720. In
accordance With one representative embodiment of the

US 8,438,351 B2
11

present invention, part s1 714 is compressed with the LZ77
compressor, part s2 716 is not compressed at all, and part s3
718 is compressed with the LZ77 compressor, but without
references back to part s1 714 or part s2 716. The siZe ofpart
s1 714 is chosen so that its compressed representation stops
just short of the ?ash block boundary B 722. The siZe of part
s2 716 is chosen so that it ?lls the remaining space from the
end ofpart s1 714 to the ?ash block boundary B 722. The siZe
of s3 718 is selected to receive whatever is left over of the
crossing block 720. This approach is transparent to the LZ77
decompressor, which reads and decompresses all three parts
of the compressed blocks seamlessly, or otherwise to start
decompressing from the ?ash boundary B 722. If a crossing
sub-block such as crossing sub-block 720 spans more than
one ?ashblockboundary, such as ?ashblockboundary B 722,
the software program repeats the partitioning of the crossing
sub-block into an s1 part and an s2 part for each ?ash block
that the crossing sub-block spans, except for the last one,
which gets a part s3.

This handling of crossing sub-blocks affects the complex
ity of the parsing/decompression function “blockcomp_de
compress()”, since there may be some ambiguity as to
whether the ?ash block starts with the last part of a crossing
sub-block or, for example, raw data. In one representative
embodiment of the present invention, the software program
inserts a special marker at the end of each crossing sub-block
so that, upon detecting this special marker, the parsing/de
compression function “blockcomp_decompress()” can
determine whether the ?ash block starts with the last part of a
crossing sub-block.

In a representative embodiment of the present invention,
smaller UPs are produced by storing ?les in the same order in
both version V1 and version V2. An element such as the
“order manager” described above handles cases where there
is no cycle of dependencies between the ?ash blocks being
updated. A cycle of dependencies as de?ned herein exists if a
?ash block A depends on material from a ?ash block B, ?ash
block B depends on material from ?ash block C, and ?ash
block C depends on material from ?ash block A. In a repre
sentative embodiment of the present invention, an element
such as the “order manager” reduces destruction of material
in ?ash memory blocks, and may put ?les in the same order in
versionV1 or versionV2 to reduce the amount of data in these
cycles of dependency. Cycles of dependency within the parts
of a particular ?le may also be handled by the “order man
ager”.

FIG. 8 shows a ?owchart for an exemplary method of
processing a ?rst memory image comprising a plurality of
compressed sub-blocks and uncompressed sub-blocks to pro
duce a second memory image comprising contents of the ?rst
memory image arranged as a plurality of memory blocks, in
accordance with a representative embodiment of the present
invention. As an aid to understanding, the following descrip
tion makes reference to the elements of FIGS. 1A, 1B, 3, and
7.

The exemplary method illustrated in FIG. 8 ?rst, at block
812, determines whether a next unprocessed portion of a ?rst
memory image such as, for example, the memory image 320
shown FIG. 3 is a compressed sub-block larger than remain
ing available space in a current memory block of a second
memory image such as, for example, the memory block 710
of the memory image 700 of FIG. 7. Next, at block 814, the
method copies the compressed sub-block to the current
memory block 710 in the second memory image 700, if the
siZe of the compressed sub-block is less than or equal to the
remaining available space in the current memory block 710 of
the second memory image 700. If, at block 816, the siZe ofthe

20

25

30

35

40

45

50

55

60

65

12
compressed sub-block is greater than the remaining available
space in the current memory block of the second memory
image, the method of FIG. 8 creates from content of the
compressed sub-block a ?rst compressed memory portion,
and if the siZe of the ?rst compressed memory portion is less
than the still remaining available space, the illustrated method
creates a non-compressed memory portion to ?ll the still
remaining available space in the current memory block of the
second memory image. The method then, at block 818, cre
ates a second compressed memory portion 718 from unused
content of the compressed sub-block for storage in the next
memory block 712 in the second memory image 700 adjacent
to the boundary 722 of the next memory block 712 and the
current memory block 710, if unused content of the com
pressed sub-block remains. At block 820, the method of FIG.
8 repeats (A) through (D) until all of the contents of the ?rst
memory image is processed to produce the second memory
image.
Some representative embodiments of the present invention

employ caching to deal with ordering problems. Such repre
sentative embodiments store into unused ?ash blocks the
material from version V1 that is about to be overwritten. In
this way, material that would otherwise be overwritten is
made available for creating version V2 ?ash memory blocks.
One representative embodiment of the present invention

uses the following method for ROFS updates:
1. Expand all the version V1 ?ash memory blocks to be

cached.
2. Preprocess the data in all version V1 ?ash memory

blocks to be cached.
3. Compress these using the same compression method as

the compressed ?rmware, so that these blocks are inde
pendently decompressible.

4. Write them into the unused ?ash blocks.
In a representative embodiment of the present invention,

the compressed blocks in step (3) are more compactly
encoded than the original version V1 ?ash memory blocks
that the UA expanded in step (1). That is because compressors
compress entire ?ashblocks of data better than they compress
small sub-blocks. This allows for more cached material.
Some representative embodiments of the present invention

employ what may be referred to as a “sub-block table”. For
each decompressed sub-block, the UA in such an embodi
ment stores in, for example, a circular buffer its compressed
and uncompressed locations in the ?ash memory block. The
UA in a representative embodiment of the present invention
accesses this structure when copying material from a previ
ously decompressed ?ash memory block. The use of the
sub-block table speeds up copies, because it allows decom
pression of a sub-block without the decompression of the
sub-blocks preceding it. The sub-block table may be used
most effectively when a copy of the sub-block is not available
in a cache.
Some representative embodiments of the present invention

may limit copying of material from the version V1. In some
representative embodiments of the present invention, all of
versionV1 is available as a potential source of copies forparts
of version V2. This, of course, involves the generator search
ing all of version V1, which may slow processing. In some
representative embodiments of the present invention, the gen
erator is arranged to function so that if the generator is recon
structing a particular ?le in version V2, and that ?le has a
corresponding counterpart ?le in version V1, then the gen
erator only examines copies that are in the counterpart ?le,
and ignores copies that are outside of it. This greatly limits the
number of copies, and speeds processing. The “counterpart
?le” may be determined, for example, from the rofsmap,

US 8,438,351 B2
13

described above. Limiting copies in this manner has little
affect on UP siZe, because copies from outside the counter
part ?le can be expected to be not very long, and encoding the
locations of the copies is easier if they’re clustered together.
Some representative embodiments of the present invention

use fast translation table lookups during preprocessing. In the
course of preprocessing, it is often useful to determine
Whether a particular pointer falls in a valid region of the
memory of the embedded device. Some representative
embodiments of the present invention speeding this up by
having the UA build an array that is indexed by the high-order
bits of each pointer. Each element in the array may take one of
three values that may be represented as “HIT”, “MISS”, and
“PENDING”. The “HIT” or “MISS” may mean that that

pointer is de?nitely or de?nitely not, respectively, in a valid
region of memory. The “PENDING” may mean that it’s
impossible to tell from the pointer’s high-order bits, and a
more-detailed search (e.g., using other data structures) is
involved to resolve this uncertainty.

Aspects of the present invention may be found in a method
of processing a ?rst memory image comprising a plurality of
compressed sub-blocks and uncompressed sub-blocks to pro
duce a second memory image comprising contents of the ?rst
memory image arranged as a plurality of memory blocks.
Such a method may comprise A) determining Whether a next
unprocessed portion of the ?rst memory image is a com
pressed sub-block larger than remaining available space in a
current memory block of the second memory image. The
method may also comprise B) copying the compressed sub
block to the current memory block in the second memory
image, if a siZe of the compressed sub-block is less than or
equal to the remaining available space in the current memory
block of the second memory image. In addition, the method
may comprise C) if the siZe of the compressed sub-block is
greater than the remaining available space in the current
memory block of the second memory image, creating from
content of the compressed sub-block a ?rst compressed
memory portion, and if the siZe of the ?rst compressed
memory portion is less than the still remaining available
space, creating a non-compressed memory portion to ?ll the
still remaining available space in the current memory block of
the second memory image. Further, the method may comprise
D) creating a second compressed memory portion from
unused content of the compressed sub-block for storage in a
next memory block in the second memory image adjacent to
the boundary of the next memory block and the current
memory block, if unused content of the compressed sub
block remains. Such a method may E) repeat (A) through (D)
until all of the contents of the ?rst memory image is processed
to produce the second memory image, and the memory blocks
of the second memory image may be independently decom
pressible.

In a representative embodiment of the present invention,
the ?rst compressed memory portion may be larger than the
non-compressed memory portion, and the non-compressed
memory portion is adjacent to a boundary betWeen the current
memory block and the next memory block of the second
memory image. The ?rst compressed memory portion and
second compressed memory portion may be compressed sub
blocks, and the non-compressed memory portion may be a
non-compressed sub-block. Each of the compressed sub
blocks and the non-compressed sub-blocks may comprise a
header portion and a data portion, and the ?rst memory image
comprises a read-only ?le system.

20

25

30

35

40

45

50

60

65

14
Additional aspects of the present invention may be seen in

a computer-readable memory device having stored therein a
plurality of instructions for causing a processor to perform the
method described above.

Although a system and method according to the present
invention has been described in connection With the preferred
embodiment, it is not intended to be limited to the speci?c
form set forth herein, but on the contrary, it is intended to
cover such alternative, modi?cations, and equivalents, as can
be reasonably included Within the scope of the invention as
de?ned by this disclosure and appended diagrams.

Accordingly, a representative embodiment of the present
invention may be realiZed in hardWare, software, or a combi
nation of hardWare and softWare. Representative embodi
ments of the present invention may be realiZed in a centraliZed
fashion in at least one computer system or in a distributed
fashion Where different elements are spread across several
interconnected computer systems. Any kind of computer sys
tem or other apparatus adapted for carrying out the methods
described herein is suited. A combination of hardWare and
softWare may be a general-purpose computer system With a
computer program that, When being loaded and executed,
controls the computer system such that it carries out the
methods described herein.
A representative embodiment of the present invention may

also be embedded in a computer program product, Which
comprises all the features enabling the implementation of the
methods described herein, and Which When loaded in a com
puter system is able to carry out these methods. Computer
program in the present context means any expression, in any
language, code or notation, of a set of instructions intended to
cause a system having an information processing capability
to perform a particular function either directly or after either
or both of the folloWing: a) conversion to another language,
code or notation; b) reproduction in a different material form.

While aspects of the present invention have been described
With reference to certain embodiments, it Will be understood
by those skilled in the art that various changes may be made
and equivalents may be substituted Without departing from
the scope of the representative embodiments of the present
invention. In addition, many modi?cations may be made to
adapt a particular situation or material to the teachings of a
representative embodiment of the present invention Without
departing from its scope. Therefore, it is intended that
embodiments of the present invention not be limited to the
particular embodiments disclosed herein, but that represen
tative embodiments of the present invention include all
embodiments falling Within the scope of the appended claims.
What is claimed is:
1. A method of processing a ?rst memory image compris

ing a plurality of compressed sub-blocks and uncompressed
sub-blocks to produce a second memory image comprising
contents of the ?rst memory image arranged as a plurality of
memory blocks, the method comprising:
A) determining Whether a next unprocessed portion of the

?rst memory image is a compressed sub-block larger
than remaining available space in a current memory
block of the second memory image;

B) copying the compressed sub-block to the current
memory block in the second memory image, if a siZe of
the compressed sub-block is less than or equal to the
remaining available space in the current memory block
of the second memory image;

C) if the siZe of the compressed sub-block is greater than
the remaining available space in the current memory
block of the second memory image, creating from con
tent of the compressed sub-block a ?rst compressed

US 8,438,351 B2
15

memory portion, and if the size of the ?rst compressed
memory portion is less than the still remaining available
space, creating a non-compressed memory portion to ?ll
the still remaining available space in the current memory
block of the second memory image;

D) creating a second compressed memory portion from
unused content of the compressed sub-block for storage
in a next memory block in the second memory image
adjacent to the boundary of the next memory block and
the current memory block, if unused content of the com
pressed sub-block remains;

E) repeating (A) through (D) until all of the contents of the
?rst memory image is processed to produce the second
memory image; and

Wherein the memory blocks of the second memory image
are independently decompressible.

2. The method according to claim 1, Wherein the ?rst
compressed memory portion is larger than the non-com
pressed memory portion, and Wherein the non-compressed
memory portion is adjacent to a boundary betWeen the current
memory block and the next memory block of the second
memory image.

3. The method according to claim 1, Wherein the ?rst
compressed memory portion and second compressed
memory portion are compressed sub-blocks, and the non
compressed memory portion is a non-compressed sub-block.

4. The method according to claim 1, Wherein each of the
compressed sub-blocks and the non-compressed sub-blocks
comprise a header portion and a data portion.

5. The method according to claim 1, Wherein the ?rst
memory image comprises a read-only ?le system.

6. A computer-readable memory device having stored
therein a plurality of instructions for causing a processor to
perform a method of processing a ?rst memory image com
prising a plurality of compressed sub-blocks and uncom
pressed sub-blocks to produce a second memory image com
prising contents of the ?rst memory image arranged as a
plurality of memory blocks, the method comprising:

A) determining Whether a next unprocessed portion of the
?rst memory image is a compressed sub-block larger
than remaining available space in a current memory
block of the second memory image;

B) copying the compressed sub-block to the current
memory block in the second memory image, if a siZe of

20

25

30

35

40

16
the compressed sub-block is less than or equal to the
remaining available space in the current memory block
of the second memory image;

C) if the siZe of the compressed sub-block is greater than
the remaining available space in the current memory
block of the second memory image, creating from con
tent of the compressed sub-block a ?rst compressed
memory portion, and if the siZe of the ?rst compressed
memory portion is less than the still remaining available
space, creating a non-compressed memory portion to ?ll
the still remaining available space in the current memory
block of the second memory image;

D) creating a second compressed memory portion from
unused content of the compressed sub-block for storage
in a next memory block in the second memory image
adjacent to the boundary of the next memory block and
the current memory block, if unused content of the com
pressed sub-block remains;

E) repeating (A) through (D) until all of the contents of the
?rst memory image is processed to produce the second
memory image; and

Wherein the memory blocks of the second memory image
are independently decompressible.

7. The computer-readable memory device according to
claim 6, Wherein the ?rst compressed memory portion is
larger than the non-compressed memory portion, and Wherein
the non-compressed memory portion is adjacent to a bound
ary betWeen the current memory block and the next memory
block of the second memory image.

8. The computer-readable memory device according to
claim 6, Wherein the ?rst compressed memory portion and
second compressed memory portion are compressed sub
blocks, and the non-compressed memory portion is a non
compressed sub-block.

9. The computer-readable memory device according to
claim 6, Wherein each of the compressed sub-blocks and
non-compressed sub-blocks comprise a header portion and a
data portion.

10. The computer-readable memory device according to
claim 6, Wherein the ?rst memory image comprises a read
only ?le system.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT No. : 8,43 8,351 B2 Page 1 of 1
APPLICATION NO. : 12/663428

DATED : May 7, 2013

INVENTOR(S) : Samson Chen et al.

It is certified that error appears in the above-identi?ed patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page, Item (54) and in the Specification, Column 1, line 1, Title:

Delete “BINARY LEVEL” and insert -- BINARY-LEVEL --, therefor.

Signed and Sealed this
Twentieth Day of August, 2013

Teresa Stanek Rea

Acting Director afthe United States Patent and Trademark O?ice

