United States Patent

US008196130B2

(12) 10) Patent No.: US 8,196,130 B2
Chen et al. (45) Date of Patent: Jun. 5,2012
(54) TRI-PHASE BOOT PROCESS IN 5,479,637 A 12/1995 Lisimaque et al. 395/430
ELECTRONIC DEVICES 5,579,522 A 11/1996 Christeson et al. 395/652
5,596,738 A /1997 Pope .cccoovvvviviiiiecn 395/430
. .. 5,598,534 A 1/1997 Haas 395/200.09
(75) Inventors: Shao-Chun Chen, Aliso VleJO,. CA 5.608.910 A 3/1997 Shimakua o 395/670
(US); Young Hee Choi, San Diego, CA (Continued)
(US); James P. Gustafson, Irvine, CA
Us) FOREIGN PATENT DOCUMENTS
(73) Assignee: Hewlett-Packard Development CA 2339923 3/2000
Company, L.P., Houston, TX (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 1337 days. O’Neill Patrick, J. System and Method for Updating and Distributing
Information, Published on May 23, 2002, WO 02/41147 Al, pp.
(21) Appl. No.: 10/932,175 178 %
(22) Filed: Sep. 1, 2004 (Continued)
(65) Prior Publication Data
Primary Examiner — Isaac Tecklu
US 2005/0114852 Al May 26, 2005
Related U.S. Application Data (57) ABSTRACT
(63) Continuation-in-part of application No. 10/756,103, An electronic device network including a plurality of elec-
filed on Jan. 13, 2004, now Pat. No. 7,725,889.
tronic devices. The electronic devices may each have updat-
(60) Provisional application No. 60/439,673, filed on Jan. ing software adapted to update firmware/software resident in
13, 2003, provisional application No. 60/500,364, the electronic devices. The electronic devices may also
filed on Sep. 3, 2003, provisional application No. employ additional software for updating the updating soft-
60/249,606, filed on Nov. 17, 2000. ware in the electronic devices. The electronic devices may
also have software adapted to determine whether a current
(51) Int.ClL version of the updating software is to be invoked or whether
p 2
GOG6F 9/445 (2006.01) a previous backup version of the updating software is to be
(52) US.CL ... 717/168; 717/170; 717/171; 717/172; invoked. The determination may be made based upon status
717/173;717/174 information resident in a update status indicator. The status
(58) Field of Classification Search 717/168 information may indicate that an update upon the updating
See application file for complete search history. software is to be conducted, rather than a normal startup
operation without performing any updates. The network may
56 References Cited also include an update generator adapted to generate updates
p g p g p

U.S. PATENT DOCUMENTS

5,261,055 A 11/1993 Moran etal. 395/275
5,418,837 A * 5/1995 Johansson et al.
5,442,771 A 8/1995 Fileppetal.ceocvne. 395/650

105

for use in updating the updating software in the electronic
devices.

16 Claims, 9 Drawing Sheets

159, FIRMWARE
MANAGER

125
N

166 Handoff
Agent

198 | Download
Agent

Mobile Handset

Update N
Package 123

Applications | J}~~121

M 119
[—117
Non-Volatile
Wemory 109
Update
Agent L—~113
Boot
Loader L—111

107

169
Update
Package
Generator

1%y
129 131

US 8,196,130 B2

Page 2
U.S. PATENT DOCUMENTS 2003/0033599 Al 2/2003 Rajarametal. 717/173
2003/0037075 Al 2/2003 Hannigan et al. ... 707/500
Jeno0a A ooy Russelletal oo 3052001 2003/0061384 Al 3/2003 Nakatani 709/245
5699275 A 12/1997 Beasley et al. 2003/0084434 AL 572003 Ren
5752030 A 5/1998 Tani 305/712 2003/0182414 Al 9/2003 O’Neill ..coocvviiviieens 709/223
3778440 A 2/1998 Yﬁlmmurla ~~~~~~~~~~~~~~~~~~~~~~ 11/154 2003/0224761 AL* 12/2003 GOtO ..cvvvernne. . 455/412.1
)10 wetal oo 2004/0015857 Al* 1/2004 Cornelius et al. e 7177120
5,790,974 A 8/1998 Tognazzini 701/204 « -
5878956 A 3/1999 Bealkowski of al 305/652 2004/0078455 Al 4/2004 Eideetal. 709/223
OAC CaKOWSKL ELal. o 2004/0093597 Al* 52004 Raoetal. .. e T1T/171
5,960,445 A 9/1999 Tamori et al. 707/203 * :
2004/0168165 Al 8/2004 Kokkinen 717/168
6,009,497 A 12/1999 Wells et al. 711/103 *
2004/0250245 Al* 12/2004 Raoetal. 717/168
6,038,636 A 3/2000 Brown, III et al. . 711/103 *
. 2006/0258344 Al* 11/2006 Chen 455/419
6,064,814 A 52000 Caprilesetal. 395/701 2007/0169099 Al* 7/2007 Rao etal. . 717/168
6,073,206 A 6/2000 Piwonka et al. . 711/102
6,073,214 A 6/2000 Fawcettccoceene. 711/133 FOREIGN PATENT DOCUMENTS
6,088,759 A 7/2000 Hasbunetal. 711/103
6,105,063 A 8/2000 Hayes, Jr. 709/223 EP 1052571 A2 11/2000
6,112,024 A 8/2000 Almond et al. . 395703 EP 1052571 A~ 1172000
6,112,197 A 8/2000 Chatterjee et al. 707/3 1P 8202626 8/1996
6,126,327 A 10/2000 Bietal. 39520051 KR 2002-0034228 5/2000
6,128,695 A 10/2000 Estakhri et al .. 717103 KR 2001-0100328 1172001
6,157,559 A 12/2000 YOO .ooovvvviicieiiiice 365/52
6,163274 A 122000 Lindgren . 340/825.44 OTHER PUBLICATIONS
g’égg’?gg g} gggg}]S3}in::1t Ztl Al s 4;?/75/?1 “Focus on OpenView A guide to Hewlett-Packard’s Network and
6311322 Bl 102001 Ikedaectal 7171 Systems Management Platform”, Nathan J. Muller, pp. 1-291, CBM
6,438,585 B2 8/2002 Mousseau et al . 709/206 Books, published 1995.
6,512,919 B2* 1/2003 Ogasawara 455/422.1 “Client Server computing in mobile environments”, J. Jing et al,
6,671,818 B1* 12/2003 Mikurak .. . 714/4 ACM Computing Surveys, vol. 31, Issue 2, pp. 117-159, ACM Press,
7,082,549 B2* 7/2006 Ra_o etal. . . 714/6 Jul. 1999.
7,130,807 Bl : 10/2006 Mikurak .. - 705/7 “ESW4: enhanced scheme for WWW computing in wireless com-
;’41133’8(5)(7) g% N 1}%888 ?\X‘;‘gﬁ; o 7;;;‘@3 munication environments”, S. Hadjiefthymiades, et al, ACM
7.725.889 B2* 52010 Gustafson et al . 717/168 gﬁgo&%ﬁ"m“grtc‘l’g;g‘“mca“on Review, vol. 29, Issue 5, pp.
2001/0029178 Al 10/2001 Crissetal. 455/419 L2 ALALLTESS, Ut 15U . .
2001/0047363 Al 11/2001 Peng ... 707/104.1 Introducing quality-of-service and traffic classes in wireless mobile
2001/0048728 Al 12/2001 Peng . 375/354 networks”, J. Sevanto, et al, Proceedings of the 1** ACM international
2002/0078209 Al 6/2002 Peng 709/227 workshop on Wireless mobile multimedia, pp. 21-29, ACM Press,
2002/0116261 Al 8/2002 Moskowitz et al. ... 705/14 1998.
2002/0131404 Al 9/2002 Mehtaetal. 370/352 “Any Network, Any Terminal, Anywhere”, A. Fasbender et al, [IEEE
2002/0152005 Al 10/2002 Bagnordi . . 700/234 Personal Communications, Apr. 1999, pp. 22-30, IEEE Press, 1999.
2002/0156863 Al 10/2002 Peng . 709/217 . .
2002/0157090 Al 10/2002 Anton, J&. ..ccooocovvvevnann. 717/178 * cited by examiner

U.S. Patent Jun. 5,2012 Sheet 1 of 9 US 8,196,130 B2
105
Update R
Package M{123
Applications | }]—121
159 | ~ FIRMWARE
MANAGER
oS
T 119
125\ ~ RAM .
Firmware |ll—117
166 \i,. Handoff Non-Volatile f__1 09
Agent Memory
Update
Agent ~4—113
196 Download
Y1 Agent Boot
Loader HNL—111
Mobile Handset
107
177
Update
Delivery Update Package
Server M o7 Store Generator
S o
129 131

Figure 1

US 8,196,130 B2

Sheet 2 of 9

Jun. 5, 2012

U.S. Patent

o W4 ¢ N2l o7
ay /J (/
q|%q|%q 9pod uinjay | payloadsun 6o MMM_UMME:

av J -
G| Z ¥o0|g 1o)eoipuj LLC
SJ0}e2Ipu|
snies
G0¢

U.S. Patent

370

Jun. 5, 2012 Sheet 3 of 9 US 8,196,130 B2
305\
0X70000
331
0X6C000
RESERVEDFOR |— 33
UPDATE PACKAGE
R R i
EXEMPLARY ~<— 0x68000 RESERVED
ELECTRONIC DEVICE) —-CANBE USED FOR
UPDATE STATUS (32B)
33— RESERVEDBANK |0 oo
0
 T~——335
340 ELECTRIC DEVICE 350
sl APPLICATION | 0x20000
< | > RESERVED
() POATE AT i
36— | 0x10000
DEVICE BOOT
33—
CODE P
FLASH MEMORY

FIGURE 3

U.S. Patent Jun. 5, 2012 Sheet 4 of 9 US 8,196,130 B2

405
401

440

\,\ Initialize Access to Firmware and Hardware
441 l

\’\ Access Encryption
442 l

Access Variables Facilitating Update
443\/\ 7
‘1 Compute an Index to Facilitate Fault Tolerant Update Recovery

444 l

S

Decompress a Compressed Update Package

445
\/\ A 4
446 ‘1 Loop (see FIGURE 5) Carry Out Steps in FIGURE 5 To Completion of Update
“ Free Memory Allocated During Update I
447 l
Flash Erase All Temporary Write Units
Set the Update Status for the Handoff Agent §I
448 l
Process Functions (Cleanup the Update Package)
449{

.

{i; Reset the Electronic Device J
451

END

402

FIGURE 4

U.S. Patent Jun. 5, 2012 Sheet 5 of 9 US 8,196,130 B2

505

\,\ 01

540
Display User Interface Message
541 v
\f\ Determine whether Memory Management System is Initialized and Operational

v

542 Open the Heap Library
v

543 s~ Decompress the Update Package and Produce a Pointer to the Raw Update Package
]
v

544 ~ Perform a Security Check on the Update Package Data

945 Initialize the Checksum Library

546 ¥

\f\ Initialize the Update Agent Engine

547

y
Load Package the Update Agent Engine Employs to Build an Updated Firmware
548
\l\ Validate Original Firmware and Monitor the Update Process

549 5] Invoke the Update Transformation and Send a Pointer and a Recovery Index

A

END

502

FIGURE 5

US 8,196,130 B2

Sheet 6 of 9

Jun. 5, 2012

U.S. Patent

09

FAN1Iv4
318V43AOI3FH-NON

09

9 FNOIS

31vaddn

1IHAN
BTt ERE}|
NIVN

0L HONVYg

\

NHO43d

/
989

929
HOLYOION
NOILYH3dO le——{31¥0dN 103130
TWWHON ON ® 3ZITVILINI
{ §
9/9 9l
1004
90¢
\ 109
609

US 8,196,130 B2

U.S. Patent Jun. 5,2012 Sheet 7 of 9
705\
740 m
0X70000

CHECKSUM (4B) < 7 0x680000
772———UA1 RELOCATABLE CODE| 0x671000
73— UABOOT 2 0x670800

RESERVED
774 UABOOT 1 0x670000
75—
740 ELECTRONIC DEVICE
APPLICATION

CHECKSUM (4B) ¢ —— 0x20000
776~———""""]UA1 RELOCATABLE CODE| 0511000
M— U’; goog 0x10800
778m UABOO I,

ELECTRONIC DEVICE
81— " BOOT CODE 00
FLASH MEMORY
FIGURE 7

U.S. Patent Jun. 5, 2012 Sheet 8 of 9 US 8,196,130 B2

805

840 %
< ~N 0x700000
CHECKSUM (4B) ¢ ——*680000
UA1 RELOCATABLE CODE |gx671000
883—m-— UABOOT 2 0x670800
884 UABOOT 1 0x670000
885—
ELECTRONIC DEVICE
APPLICATION
0x20000
886———— 0x11000
ERASED 0x10800
i 0x10000
ELECTRONIC DEVICE
88— " BOOT CODE 0x0

FLASH MEMORY

FIGURE 8

U.S. Patent Jun. 5, 2012 Sheet 9 of 9 US 8,196,130 B2

905

991
0x700000
0x680000
092~ ——
RESERVED UNIT
0x670000
993———"""7 ELECTRONIC DEVICE
APPLICATION
0x20000
994~ —— 0x11000
UPDATED UPDATE
TEDUP 0x10800
0x10000
095— ——
ELECTRONIC DEVICE
96——"""1 " BOOTCODE | oy0

FLASH MEMORY

FIGURE 9

US 8,196,130 B2

1

TRI-PHASE BOOT PROCESS IN
ELECTRONIC DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation in part of U.S. patent
application Ser. No. 10/756,103, entitled “Mobile Handset
Capable of Updating Its Update Agent,” filed Jan. 13, 2004,
now U.S. Pat. No. 7,725,889, which claims priority to Provi-
sional application No. 60/439,673, filed on Jan. 13, 2003.

The present application makes reference to, claims priority
to, and the benefit of U.S. Provisional Patent Application
60/500,364 entitled “TRI-PHASE BOOT PROCESS IN A
MOBILE HANDSET”, filed Sep. 3, 2003, the complete sub-
ject matter of which is hereby incorporated herein by refer-
ence in its entirety.

The present application also hereby incorporates herein by
reference in its entirety, the complete subject matter of U.S.
Provisional Patent Application 60/439,673, filed Jan. 13,
2003.

The present application also hereby incorporates herein by
reference in its entirety, the complete subject matter of PCT
Application having publication number WO 02/41147 Al
and PCT application number PCT/US01/44034, filed on Nov.
19, 2001.

The present application also hereby incorporates herein by
reference in its entirety, the complete subject matter of U.S.
Provisional Patent Application 60/249,606 filed on Nov. 17,
2000.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

[Not Applicable]

MICROFICHE/COPYRIGHT REFERENCE

[Not Applicable]

BACKGROUND OF THE INVENTION

Electronic devices, such as mobile phones and personal
digital assistants (PDA’s), often contain firmware and/or soft-
ware applications that are either provided by the manufactur-
ers of the electronic devices, by telecommunication carriers,
or by third parties. These firmware and software applications
often contain bugs. New versions of firmware and software
are periodically released to fix the bugs and/or to introduce
new features.

Update programs, code, or functions employed to update
the firmware and/or software components in electronic
devices may also need to be changed, modified, and/or
updated. Programs may be updated by employing an update
agent. An update agent may comprise software for updating
one of firmware and/or software. Updating the update agent
in an electronic device, for example a mobile handset, may be
challenging. Ifthe update is not executed properly, the update
agent may be rendered inoperable and/or become corrupted.

Further limitations and disadvantages of conventional and
traditional approaches will become apparent to one of ordi-
nary skill in the art through comparison of such systems with
the present invention as set forth in the remainder of the
present application with reference to the drawings.

SUMMARY OF THE INVENTION

Aspects of the present invention may be found in an update
status indicator for use in updating one of firmware and soft-

20

25

30

35

40

45

50

55

60

65

2

ware in a mobile electronic device. The update status indica-
tor may comprise an update address block of memory. The
update address may identify where an updating software is
stored in the electronic device. The update status indicator
may also comprise a return block of memory comprising a
value to be returned when updating the electronic device has
been completed and an indicator block of memory compris-
ing a plurality of status indicators.

In an embodiment according to the present invention, the
plurality of status indicators may be employed by updating
software comprising a plurality of executable instructions for
converting a first version of software to a second version of
software.

In an embodiment according to the present invention, at
least one of the plurality of status indicators may be employed
to indicate that an update is present in the electronic device
and that an update is to be performed.

In an embodiment according to the present invention, at
least one of the plurality of status indicators may be employed
to indicate whether the software to be updated is valid and
capable of being updated.

In an embodiment according to the present invention, at
least one of the plurality of status indicators may be employed
to indicate which pass through the software to be updated that
the update is currently performing.

In an embodiment according to the present invention, at
least one of the plurality of status indicators may be employed
to indicate that the update of the software to be updated is
completed.

Aspects of the present invention may be found in a memory
configuration for a mobile electronic device comprising a
software for booting the electronic device located in a first
portion of memory, an updating software for updating one of
firmware and software in the electronic device located in a
second portion of memory, a reserved portion of memory
usable for backing up one of code and information during an
updating event, and at least one additional portion of memory
for storing an update usable by the updating software during
the updating event. Updating one of software and firmware in
the electronic device may comprise executing a plurality of
executable instructions for converting a first version of one of
software and firmware to a second version of one of software
and firmware.

In an embodiment according to the present invention, the
updating software may be updatable in a fault tolerant man-
ner.

In an embodiment according to the present invention, the
memory configuration may comprise non-volatile memory.

In an embodiment according to the present invention, soft-
ware and firmware may be stored in the memory configura-
tion in a compressed form and may be decompressed out of
the memory configuration into random access memory for
one of processing and updating.

Aspects of the present invention may be found in an updat-
ing software employable for updating one of software and
firmware in a mobile electronic device. The updating soft-
ware may comprise a software component. The software
component may be adapted to survey and validate one of
software and firmware to be updated in the electronic device
to determine that the one of software and firmware are
capable of being updated. The software component may also
be adapted to identify an update interruption.

In an embodiment according to the present invention, iden-
tifying an update interruption may provide a fault tolerant
update and may permit an interrupted update to be re-initiated
where the interruption occurred.

US 8,196,130 B2

3

Aspects of the present invention may be found in an update
software wrapper employable in conjunction with updating
software for updating one of software and firmware in a
mobile electronic device. The update software wrapper may
be adapted to facilitate interaction between electronic device
specific software and application specific software.

In an embodiment according to the present invention, elec-
tronic device specific software may comprise software
adapted to operate in a particular manufacturers electronic
device models.

In an embodiment according to the present invention,
application specific software may comprise software adapted
to perform a specific function that is independent of a par-
ticular manufacturers electronic device models.

In an embodiment according to the present invention, the
update software wrapper may further comprise software
combining manufacturer dependent electronic device model
root code and update information adapted to perform appli-
cation specific updates independent of manufacturer elec-
tronic device models to permit interaction and interfacing of
generated updates and particular manufacturer electronic
device model one of firmware and software.

In an embodiment according to the present invention, the
update software wrapper may be adapted to call a flash erase
function before a flash write function of at least one compo-
nent of a memory module.

In an embodiment according to the present invention, the
update software wrapper may be adapted to manage and
adjust at least one of evaluation settings, update variables, and
update functions.

Aspects of the present invention may be found in a mobile
electronic device comprising a software adapted to update an
updating software resident in the electronic device in a non-
fault-tolerant manner and a fault-tolerant manner.

In an embodiment according to the present invention,
updating the updating software in a fault tolerant manner may
comprise storing a backup copy of the updating software in
non-volatile memory prior to initiation of an update event.

Aspects of the present invention may be found in a mobile
electronic device comprising at least two program files stored
in a non-volatile memory configuration. The at least two
program files may comprise at least one of code and data
usable for booting an electronic device. The at least two
program files may be adapted to call associated boot instruc-
tions from different locations in memory depending upon a
status of a software to be updated.

In an embodiment according to the present invention, the at
least two program files may be binary files.

In an embodiment according to the present invention, the at
least two program files may be adapted to perform boot activi-
ties at different times.

In an embodiment according to the present invention, one
of the at least two program files may be adapted to boot
updating software from a default start location in non-volatile
memory and another of the at east two program files may be
adapted to boot updating software from a reserved backup
location in non-volatile memory.

In an embodiment according to the present invention, the at
least two program files may each be associated with addi-
tional block of re-locatable code that is copied from a default
location to a reserved backup location to provide fault toler-
ance prior to initiation of a fault tolerant update of updating
software resident in the electronic device.

In an embodiment according to the present invention, the
mobile electronic device may further comprising software for
booting the electronic device. The software for booting may
be adapted to invoke at least one of the at least two program

20

25

30

35

40

45

50

55

60

65

4

files to initialize and relocate updating software to be updated
and an associated block of re-locatable code from storage in
non-volatile memory to a random access memory for one of
booting, processing, and updating.

These and other advantages, aspects, and novel features of
the present invention, as well as details of illustrated embodi-
ments, thereof, will be more fully understood from the fol-
lowing description and drawings.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 is a block diagram illustrating an exemplary provi-
sioning system comprising an electronic device communica-
tively coupled to a delivery server in accordance with an
embodiment of the present invention;

FIG. 2 is a block diagram illustrating an exemplary update
status component comprising at least an update package
address, an indicator block, a return code, and an unused/
unspecified portion in accordance with an embodiment of the
present invention;

FIG. 3 is a block diagram illustrating an exemplary
memory configuration for an exemplary electronic device in
accordance with an embodiment of the present invention;

FIG. 4 is a flow diagram illustrating an exemplary method
of fault tolerant updating of an update agent in an exemplary
electronic device in accordance with an embodiment of the
present invention;

FIG. 5 is a flow diagram illustrating a portion of the exem-
plary method of fault tolerant updating of an update agent in
an exemplary electronic device illustrated in FIG. 4 in accor-
dance with an embodiment of the present invention;

FIG. 6 is a flow diagram illustrating an exemplary tri-phase
method of updating of an update agent in an exemplary elec-
tronic device in accordance with an embodiment of the
present invention;

FIG. 7 is a block diagram illustrating an exemplary
memory configuration for an exemplary electronic device in
accordance with an embodiment of the present invention;

FIG. 8 is a block diagram illustrating an exemplary
memory configuration for an exemplary electronic device in
accordance with an embodiment of the present invention; and

FIG. 9 is a block diagram illustrating an exemplary
memory configuration for an exemplary electronic device in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Electronic devices may be adapted to access servers to
retrieve update information for updating electronic devices.
An electronic device may be, for example, a mobile electronic
device having software/firmware, such as, mobile cellular
phone handsets, personal digital assistants (PDA’s), pagers,
MP3 players, digital cameras, etc.

Update information may comprise information that modi-
fies, converts, or changes firmware and/or software compo-
nents installed in the mobile electronic device. Update infor-
mation may also add new services to the mobile electronic
device, as desired by a service provider, device manufacturer,
or an end-user. Update information may also comprise infor-
mation that modifies, converts, or changes software capable
of performing updates upon other firmware and/or software
components installed in the mobile electronic device.

Aspects of the present invention may be found in a fault
tolerant method of updating software and/or firmware. The
software and/or firmware may be stored in compressed form
in a non-volatile memory device, for example, a flash

US 8,196,130 B2

5

memory device. The software and/or firmware may comprise
program instructions, code, information and/or data. The
non-volatile memory may be erased before reprogramming.
In another embodiment according to the present invention,
the non-volatile memory may be overwritten, with or without
being erased, during updating and/or reprogramming.

In an embodiment according to the present invention, a
fault tolerant method of updating software and/or firmware
may comprise preventing loss of information, in the event that
power failure occurs during an updating and/or reprogram-
ming event. Inan embodiment according to the present inven-
tion, a fault tolerant method of updating software and/or
firmware may comprise ensuring continuity of an updating
and/or reprogramming procedure, in the event that power
failure occurs during the updating and/or reprogramming
procedure. In an embodiment according to the present inven-
tion, a fault tolerant method of updating software and/or
firmware may comprise preventing corruption and/or invali-
dation of the software and or firmware, in the event that power
failure occurs during an updating and/or reprogramming
event.

In an embodiment according to the present invention, soft-
ware and/or firmware to be updated in the electronic device
may comprise program code and/or data. The program code
and/or data may be organized/arranged in units or blocks. The
blocks may also be called banks, compressed units/blocks,
and decompressed units/blocks herein.

In an embodiment according to the present invention, an
update package generator may be adapted to generate an
update package comprising a plurality of update units/blocks
for use in updating one of firmware and/or software in the
electronic devices. An update block/unit may be defined as a
block containing information and/or executable program
instructions usable to update a block of information to be
updated.

An update (update package) may comprise a firmware/
software update that may be used to modify or change a
version of a particular firmware/software, for example,
upgrading to a newer version. Updating software (update
agent) used for updating firmware and/or software, may be
stored in the electronic device. The updating software may be
referred to herein as an update agent. The update agent may
also be updated by an update (update package) generated in
the update package generator.

In an embodiment according to the present invention, the
update package may comprise, for example, a set of execut-
able instructions for converting a first version of firmware/
software (“code”) to a second version of code. In an embodi-
ment according to the present invention, an update package
may also add new services to the electronic device or delete
services, as desired by the service provider or an end-user. An
update package may also be referred to in abbreviated form
herein as an update. Updating one of firmware/software in a
mobile electronic device may comprise performing the set of
executable instructions and converting a first version of firm-
ware/software (“code”) to a second version of code.

In an embodiment according to the present invention, an
electronic device network adapted to support a plurality of
electronic devices may comprise an update package genera-
tor. The update package generator may be adapted to generate
updates (update packages) comprising a plurality of update
units/blocks. The update units/blocks may comprise the set of
executable instructions for converting a first version of firm-
ware/software (“code”) to a second version of code.

In an embodiment according to the present invention, gen-
erating an update package may comprise overwriting infor-
mation/code resident in an existing/previous update package

20

25

30

35

40

45

50

55

60

65

6

with new or different (updated) information. For example, an
update package comprising a plurality of executable program
instructions may have previously been generated (and
employed) to update a firmware in a mobile electronic device,
for example, from firmware version 2 to firmware version 3.
The update may be called update 2-3, for example. To gener-
ate an update package for updating firmware in an electronic
device from firmware version 3 to firmware version 4 (update
3-4), for example, the previous update package (update 2-3)
may be modified (executable instructions/code/data may be
added, deleted, and/or overwritten) to economically generate
the update package for updating firmware in an electronic
device from firmware version 3 to firmware version 4 (update
3-4). In this manner, the update package generator may not
have to generate an entirely new update package, but rather
the update generator may be adapted to recycle a previous
update package using at least some new/different executable
instructions.

In an embodiment according to the present invention, gen-
erating an update may comprise writing and organizing in
memory information/code creating a new update package. An
update package may be built using a plurality of blocks of
update information.

In an embodiment according to the present invention, an
update (update package) generated by the update package
generator in the electronic device network may be com-
pressed for transmission to a plurality of electronic devices
having firmware/software to be updated. The compressed
update package may also be decompressed after being
received in the electronic device.

FIG. 1 is a block diagram illustrating an exemplary provi-
sioning system 105 comprising an electronic device, for
example, mobile handset 107 in accordance with an embodi-
ment of the present invention. The electronic device, for
example, mobile handset 107, may be communicatively
coupled to a delivery server 127 in an electronic device net-
work via a communications link 177. The communication
link 177 may be one of a wire or wireless communication
link.

In an embodiment according to the present invention, the
delivery server 127 may be disposed in a wireless/carrier
electronic device network remote from the electronic device,
for example mobile handset 107. The delivery server 127 may
also be communicatively coupled to an update store 129 via a
communications link 167. The communication link 167 may
be one of a wire or wireless communication link. The update
store 129 may be a repository of update packages generated
by an update package generator 131. The update store 129
may also be communicatively coupled to the update package
generator 131 via a communication link 169. The communi-
cation link 169 may be one of a wire or wireless communi-
cation link.

In an embodiment according to the present invention, the
electronic device, for example, mobile handset 107 may com-
prise a non-volatile memory (NVM) 109 and a firmware
manager 159. The NVM 109 may comprise a boot loader 111,
an update agent 113, a firmware 117, an operating system
(OS) 119, electronic device applications 121, and an update
package 123, for example. The update agent 113 may, for
example, comprise software for updating at least one of the
firmware 117, the operating system 119, and/or the electronic
device applications 121 of the electronic device, for example,
mobile handset 107, by employing the update package 123. In
an embodiment according to the present invention the update
agent 113 may also be updated. The update package generator
131 in the electronic device network may also be adapted to

US 8,196,130 B2

7

generate an update package, for example update package 123,
for use in updating the update agent 113.

In an embodiment according to the present invention, the
update agent 113 may be adapted to employ a random access
memory (RAM) device 125 as temporary update storage/
processing memory to update the firmware 117, the operating
system 119, and/or the electronic device applications 121.
The RAM 125 may also be used as temporary update storage/
processing memory during an update of the update agent 113.
The update agent 113 may be adapted to update the firmware
117, the operating system 119, and/or the electronic device
applications 121 in a fault-tolerant manner. In an embodiment
according to the present invention, the update agent 113 may
also be updated in a fault tolerant manner.

In an embodiment according to the present invention, the
boot loader 111 may be executed during startup or reboot, for
example. The boot loader 111 may be capable of determining
whether to execute the update agent 113. The boot loader 111
may also be capable of determining that an update package,
for example update package 123, is present and that an update
of one of the firmware 117, the OS 119, electronic device
applications 121, and/or the update agent 113 is to be per-
formed.

In an embodiment according to the present invention,
determining whether to execute the update agent 113 may, for
example, be facilitated by the boot loader 111 accessing and
evaluating at least one status flag/indicator associated with a
generated update package, for example, update package 123.
In an embodiment according to the present invention, a status
flag/indicator may also be evaluated by the boot loader 111 to
determine whether the update agent 113 is to be updated. If an
update is to be conducted, the boot loader 111 may evaluate
the update agent 113 to determine whether the update agent
113 is valid and useable for performing the update, or cor-
rupted and incapable of performing the update, for example.

In an embodiment according to the present invention,
whether to execute the update agent 113 may be determined
by the boot loader 111 by computing and evaluating a cyclic
redundancy check (CRC) and/or checksums, for example.
The CRC and/or checksums may be compared to previously
computed reference values by the boot loader 111.

In an embodiment according to the present invention, dur-
ing the update of an update agent, for example update agent
113, if the update procedure is interrupted, then the update
agent 113 may be left in a state of partial update. A partially
updated update agent may be unusable, inoperable, and/or
corrupted. To avoid rendering inoperable and/or corrupting
the update agent, for example update agent 113, a backup
copy of the update agent 113 to be updated may be created,
stored, and maintained in the NVM 109 prior to initiation/
performance of the update procedure. A status flag/indicator
may also be used to alert/notify the boot loader 111 that an
update of the update agent is partially completed and further
may indicate where the update was interrupted, for example.

In an embodiment according to the present invention, a
fault tolerant (recoverable) update of the update agent may
therefore be ensured. If the update agent being updated, for
example update agent 113, is rendered inoperable or cor-
rupted by a failure during the update procedure, the unmodi-
fied backup copy of the update agent may be recovered from
memory, for example NVM 109, wherein the update may
subsequently be re-initiated where the update was inter-
rupted, for example. If, during reboot or startup, it is deter-
mined that the partially updated or improperly updated
update agent is corrupted and/or inoperable, then the backup
copy of the update agent stored in NVM 109 may be invoked
by boot loader 111, and the update procedure may be re-

20

25

30

35

40

45

50

55

60

65

8

initiated/re-executed. A status flag/indicator may also be
employed to alert/notify the boot loader 111 that the update
agent, for example update agent 113, is corrupted and/or
inoperable.

In an embodiment according to the present invention, the
boot loader 111 may be adapted to determine whether the
current update agent 113 is to be invoked (a default bootstrap-
ping), whether the update agent is to be updated, or whether a
backup version of the update agent 113 in NVM 109 is to be
invoked. The determination may be made based upon status
information, (status flags/indicators), for example, whether
an update is to be conducted and/or whether a normal startup
operation without updates is to be conducted.

In an embodiment according to the present invention, the
electronic device may also comprise a handoff agent 166
capable of facilitating the setting of status information (status
flags/indicators) and memory location addresses after an
update package, for example update package 123, is down-
loaded to the electronic device from delivery server 127. Inan
embodiment according to the present invention, the elec-
tronic device may also comprise a download agent 196. The
download agent 196 may be capable of facilitating the down-
loading of update packages, for example update package 123.

FIG. 2 is a block diagram illustrating an exemplary update
status indicator 205. The update status indicator 205 may be
stored in non-volatile memory, such as for example, NVM
109 illustrated in FIG. 1. The update status indicator may
accompany an update package and/or be part of a generated
update package being downloaded to an electronic device.
The update status indicator 205 may be 32 bytes long, for
example. The update status indicator 205 may at least com-
prise an update package address 209, an indicator block 215,
areturn code 213, and a unused/unspecified portion 211. The
update package address 209 may be 4 bytes long, for
example. The indicator block 215 may be 4 bytes long, for
example. The return code also may be 4 bytes long, for
example. The indicator block 215 of update status indicator
205 may comprise a plurality of status flags/indicators that
may be evaluated by the boot loader 111 to determine whether
anupdate is to be performed, an update is partially completed,
the update agent is corrupted, etc.

In an embodiment according to the present invention, an
update agent, for example update agent 113 illustrated in F1G.
1, may employ the update package address 209 to retrieve an
update package, for example update package 123. The
retrieved update package 123 may be employed to update the
firmware 117, the operating system 119, and/or applications
121. The retrieved update package 123 may also be employed
to update the update agent 113 illustrated in FIG. 1.

In an embodiment according to the present invention, the
indicator block 215 may comprise a plurality of status flags/
indicators, for example, by, b;, b,, and b;. The exemplary
indicators, (by, b,, b,, and b;) in indicator block 215 may be
employed by the boot loader to control invocation of the
update agent 113, for example. Flags, addresses, indicators,
security information, and additional device status informa-
tion may also be employed in the update status indicator 205
to indicate the status of functions associated with correspond-
ing firmware, software, hardware, and other code/data/infor-
mation.

In an exemplary embodiment according to the present
invention, the exemplary indicators (bg, b;, b,, and b;) may be
provided with the following exemplary definitions, for
example.

In an embodiment according to the present invention, the
indicator b, may comprise an update indicator, for example.
The indicator b, may be set by a handoff agent, for example

US 8,196,130 B2

9
handoff agent 166 illustrated in FIG. 1. The indicator b, may
be set to O to indicate that an update package 123 is present
and an update is to be performed. The default/initial value for
indicator b, may be 1, for example.

In an embodiment according to the present invention, the
indicator b, may comprise a validation phase indicator, for
example. When the validation phase has been completed, the
value of indicator b; may be set to 0 in a plurality of device
wrappers. The default/initial value for indicator b, may be 1,
for example. A device wrapper may comprise a software
interface adapted to permit generic software to interact with a
particular version of software. For example, electronic device
manufacturers may each provide unique particular firmware
in a corresponding electronic device model. Electronic device
update generating companies may not be provided the pro-
prietary or root code provided in the manufacturer’s elec-
tronic devices. The electronic device update generating com-
panies may generate generic update packages adapted to
perform specific updates on any electronic device, regardless
of manufacturer, for example an update agent. Therefore,
device wrappers are developed to permit interaction/interfac-
ing of the generic updating software and the particular elec-
tronic device firmware/software. Wrappers facilitate reuse of
update agent code without customization of the update agent.

In an embodiment according to the present invention, the
indicator b, may indicate a transform 1 phase, for example.
Updating firmware/software may comprise multiple passes
(updating passes) through the software before the update is
completed. A transform phase indicator may comprise an
indicator alerting/notifying the boot loader 111 which pass or
phase the update was performing when, for example, the
update was interrupted, or when the electronic device reboo-
ted as part of the update. A transform 1 phase indicator, for
example, b,, may indicate that the update had completed or
was involved in a first pass of phase through the software
when the device rebooted or the update was interrupted.
When the transform 1 phase has been completed, the value of
indicator b, may be set to 0 in a plurality of device wrappers.
The default/initial value for indicator b, may be 1, for
example. A plurality of transform indicators may reside and
be evaluated in indicator block 215 depending on the number
of passes or phases that an update may be deemed to make in
performing an update. In an exemplary embodiment accord-
ing to the present invention, three transform phases may be
employed, for example, a pre-processing phase (transform 1,
for example), an updating phase (transform 2, for example),
and a post-processing phase (transform 3, for example).

In an embodiment according to the present invention, the
indicator b; may comprise an update completion indicator,
for example. When an update has been completed, the value
of indicator b; may be set to 0. The default/initial value for
indicator by may be 1, for example.

In an embodiment according to the present invention, when
indicator by, is set to 0 and indicator by is set to 1, an update
may be initiated, for example.

In an embodiment according to the present invention, when
an update procedure is completed, the return code 213 illus-
trated in FIG. 2 may be set to a return value provided by the
boot loader 111, update package 123, the update agent 113,
and/or an update agent (UA) software development kit
(SDK). The UASDK may comprise a library comprising plu-
rality of functions associated with the device wrappers, the
update agent 113, the update package 123, and the boot loader
111. In another embodiment according to the present inven-
tion, the plurality of function may be miscellaneous functions

20

25

30

35

40

45

50

55

60

65

10

that are not directly related to any particular software, but may
comprise information and/or data used to carryout miscella-
neous functions, for example.

In an embodiment according to the present invention, the
update package address 209 illustrated in FIG. 2 may com-
prise 4 bytes (4B), for example. The 4 bytes of the update
address block 209 may be used to store the address in NVM
109, illustrated in FIG. 1, of an update package, for example
update package 123.

Aspects of the present invention may be found in a tri-
phase method of booting and updating an electronic device.
In a first phase boot/reboot, also referred to as a default
boot/reboot, the electronic device may boot/reboot firmware/
software in the electronic device and initiating normal opera-
tion, for example.

In a second phase update boot/reboot, the electronic device
may boot/reboot and update any and/or all firmware/software
in the electronic device. However, if the update agent 113 is
being updated, a backup copy of the update agent 113 may be
stored in NVM 109, for example, before updating the update
agent. The second update boot/reboot method is fault tolerant
because if a failure occurs during updating the update agent
113, catastrophic failure may be avoided because the backup
copy of the original update agent 113 may be invoked.

In the third phase update boot/reboot, the electronic device
may boot/reboot and update any and/or all firmware/software
in the electronic device. However, in this method the boot
loader 111 may determine that the update agent 113 is
improperly updated. Therefore, during the boot/reboot, the
backup copy of the update agent 113 is invoked and decom-
pressed out of NVM 109 into RAM 125, and a catastrophic
failure is averted. The third update boot/reboot method is fault
tolerant because if a failure during the update of the update
agent 113 is detected, catastrophic failure is avoided because
the backup copy of the original update agent 113 remains
usable.

Aspects of the present invention may also be found in
integrating an update agent, for example update agent 113
illustrated in FIG. 1, comprising updating software into elec-
tronic devices, such as for example, mobile handset 107 also
illustrated in FIG. 1.

Aspects of the present invention may also be found in an
update package generator, such as update package generator
131 illustrated in FIG. 1. The update package generator 131
may be capable of generating update packages for updating at
least one of the firmware 117, the OS 119, electronic device
applications 121, and the update agent 113 in an electronic
device, such as for example, mobile handset 107, all illus-
trated in FIG. 1, by employing a command line for the elec-
tronic device images. A command line may comprise a textual
interface for entering commands to a processing device, as
opposed to a graphical interface for entering commands. The
present invention is not limited to a command line interface
but may also comprise a graphical interface in another
embodiment according to the present invention.

In an embodiment according to the present invention, the
update agent software development kit (UASDK) may com-
prise a UASDK engine. The UASDK engine may comprise
the minimum functionality to perform an update.

In an embodiment according to the present invention, an
exemplary electronic device, such as for example, mobile
handset 107 may comprise the following configuration and/or
specifications. The electronic device may comprise a flash-
type non-volatile memory, such as for example, NVM 109.
The flash-type non-volatile memory 109 may be, for
example, an AMD DS42585 designed by Advanced Micro
Devices, Inc. The AMD DS42585 is a 32 Megabit (4 Mx8-

US 8,196,130 B2

11

Bit/2 Mx16-Bit) top boot flash & 8 Mbit (1 Mx8-Bit/512
Kx16-Bit) static RAM device having a bank size of 64 KB, a
boot block size of 8 KB *8, a code size of 7 MB (0x0-
0x700000), and RAM of 1 MB (0x1200000-0x1300000).

FIG. 3 is a block diagram illustrating an exemplary
memory configuration 305 of a flash memory for an exem-
plary electronic device, such as for example, the mobile hand-
set 107 illustrated in FIG. 1, in accordance with an embodi-
ment of the present invention.

The exemplary flash memory 305 illustrated in FIG. 3 may
comprise a block of memory 338 for storing an electronic
device boot code and an unspecified block of memory 337.
The exemplary flash memory 305 may also comprise a block
of memory 336 for storing update agent executables. The
block of memory 336 for storing update agent executables
may be further sub-divided into a reserved block 350 and a
checksum block 340. The reserved block 350 may be 32 bytes
long, for example. The checksum block 340 may be 4 bytes
long, for example.

The exemplary flash memory 305 may also comprise a
block of memory 335 for storing electronic device applica-
tions and a reserved bank of memory 334. The reserved bank
of'memory 334 may also be sub-divided into another reserved
block of memory 360. The reserved block of memory 360
may be used for storing an update status indicator, such as for
example, the update status indicator 205 illustrated in FIG. 2.
The reserved block of memory 360 may be 32 bytes long, for
example.

The exemplary flash memory 305 may also comprise an
unspecified block of memory 333. The unspecified block of
memory 333 may also be sub-divided into an update status
block 370. The update status block 370 may be used for
storing an update status indicator, such as for example, the
update status indicator 205 illustrated in FIG. 2. The update
status block 370 may be 32 bytes long, for example.

The exemplary flash memory 305 illustrated in FIG. 3 may
also comprise a block of memory 332 reserved for receiving
and storing an update package, for example. The exemplary
flash memory 305 may also comprise another unspecified
block of memory 331.

In an embodiment according t the present invention, to
make a tri-phase booting test demonstrable, two update pack-
ages may be flashed/stored in memory block 332, for
example, as illustrated in FIG. 3. The update packages may
comprise abase version and a base version converted to a new
version, for example.

In an embodiment according to the present invention, the
update status blocks 360 and 370 may comprise the last and
first 32 bytes of reserved bank of memory 334 and unspecified
memory block 333, respectively. However, if a problem
occurs in accessing the data/information during an initializa-
tion/boot/reboot, the update status blocks 360 and 370 may be
changed/moved to another different available location.

In an embodiment according to the present invention, the
reserved block of memory 360 and the update status block
370 may both be 32 bytes long, for example. The blocks may
be used to detect the status of and facilitate initiation of the
update agent 113 and alerting/notifying the UASDK, the boot
loader 111, and/or the handoff agent 166 of the status of the
update agent 113, for example.

In an embodiment according to the present invention, the
handoff agent 166, the firmware manager 158, the download
agent 196, etc. may not originally be integrated into the elec-
tronic device image permitting the update agent 113 to be
tested during manual downloading of an update package 123
using JTAG flash programming, for example. JTAG com-
prises a standard specification of an interface for testing inte-

20

25

30

35

40

45

50

55

60

65

12

grated circuits. JTAG permits detecting of status and control
of integrated circuit functionality.

In an embodiment according to the present invention, an
electronic device menu may be enabled to set the exemplary
update indicator bits (by, b;, b,, and b, for example) in the
update status indicator block 205. In another embodiment
according to the present invention, the handoff agent 166 may
be enabled to set the exemplary update indicator bits (by, b,
b,, and b, for example) in the update status indicator block
205.

In an embodiment according to the present invention, base-
line implementations, such as for example, for security and
authentication implementations, may be used to create a valid
electronic device image updatable employing the update
agent 113. Baseline implementations may comprise, for
example, a checksum implementation, such as for example, a
cyclic redundancy check (CRC32), acompression implemen-
tation, such as for example, bfzlib compression, a security
implementation, such as for example, MD5 with RSA, a
predictor implementation, such as for example, a predictor
for a thumb processor (by ARM) developed by Bitfone Corp.,
a surveyor implementation (update agent validation and
update interruption/failure identification), a heap module
implementation, and a utility interface implementation.

In an embodiment according to the present invention, to
test the functionality of the update agent 113, the electronic
device may also be programmed so that all possible electronic
device features are integrated and present in the electronic
device. Electronic device testing features may comprise test-
ing fault tolerant updating of firmware/software, testing fault
tolerant updating ofthe update agent 113, testing the tri-phase
booting method, and testing a thumb prediction method.

In an embodiment according to the present invention, the
handoff agent 166 may not be available for testing, but hand-
off agent interfaces and device wrappers may be employed.

In an embodiment according to the present invention, a
UASDK Library may comprise a single library provided for
the implementation of the functionality of the update agent
113. In another embodiment according to the present inven-
tion, a UASDK Library may comprise a plurality of applica-
tion-specific libraries provided for implementing the func-
tionality of the update agent 113. All of the baseline update
agent functionality may be included in the library/libraries as
well as all currently available update agent plug-ins. Func-
tionality may be compiled for a particular target electronic
device environment.

In an embodiment according to the present invention, the
UASDK library/libraries may comprise a set(s) of source
directories. At integration time, files adapted for linking and
compiling the update agent 113 may be selected by adjusting
electronic device interfaces and device wrappers.

FIG. 4 is a flow diagram 405 illustrating an exemplary
method of fault tolerant updating of any of the firmware 117,
the software applications 121, the operating system (0S) 119,
and the update agent 113 in an exemplary electronic device in
accordance with an embodiment of the present invention.

The exemplary method illustrated in FIG. 4 may be used to
update firmware/software using the UASDK engine, elec-
tronic device interfaces, and device wrappers resident in the
baseline library/libraries. The following implementation/
method illustrates how to use the engine prototypes, interface
functions, and wrapper/driver functions during an update. In
an embodiment according to the present invention, the
ua_Main_Start() function is an exemplary module initiating
the update of a target firmware.

The method may begin at start (block 401). The method
may comprise initializing access to one of the firmware 117,

US 8,196,130 B2

13

hardware components, the operating system (OS) 119, the
software applications 121, and/or the update agent 113 (block
440). Initializing access to software/firmware may also com-
prise initializing access to device wrapper functions expos-
ing/decompressing data from non-volatile flash memory 109
into RAM 125, for example.

The method may also comprise accessing the encryption
(block 441). Accessing the encryption (encryption engine/
software) (block 441) may comprise accessing a public key,
such as, a 261-byte public key, a 1024-byte public key, etc.,
for example.

The method may also comprise accessing variables facili-
tating the update of the electronic device (block 442). Access-
ing variables to be used to facilitate the update of the elec-
tronic device may comprise dynamically allocating a
plurality of global variables used by the UASDK, for
example. A void pointer may also be sent to the UASDK
engine for initialization. The void pointer may persist
throughout the entire update.

The method may also comprise computing an index to
facilitate fault tolerant update recovery (block 443). The
method may also comprise decompressing a compressed
update package from non-volatile memory 109 to RAM 125,
for example, (block 444). The method may also comprise
obtaining a decompressed update package from a compressed
update package by employing a compression implementa-
tion, such as for example, the zlib compression plug-in. The
method may also comprise a loop of instructions that may be
repeated within the implementation until the update is com-
pleted (see FIG. 5 for the loop steps) (block 445). After
completing the loop of instructions illustrated in FIG. 5, the
method may continue as follows.

The method may comprise freeing memory allocated for
use during the update (block 446). Freeing the allocated
memory may also comprise freeing memory from a cyclic
redundancy check (CRC) table or checksum table, for
example.

The method may also comprise flash erasing all temporary
write units/blocks/banks set-aside, allocated, and/or used
during the update (block 447). Flash erasing the temporary
write units may also comprise issuing a flash-erase command.
The method may also comprise freeing memory allocated for
aplurality of global variables. The method may also comprise
setting an update status flag/indicator in an update status
indicator 205 for the handoff agent 166 (block 448).

The method may also comprise cleaning up the update
package, for example, update package 123 illustrated in FI1G.
1 (block 449). Cleaning up the update package 123 may
comprise processing the device wrapper functions employed
during the update. The method may also comprise resetting
the electronic device (block 451). Resetting the electronic
device may also comprise rebooting the electronic device.
The method illustrated in FIG. 4 may end at block 402.

FIG. 5 is a flow diagram 505 illustrating additional detail of
a loop of instructions associated with the exemplary method
of fault tolerant updating of an exemplary electronic device
(such as mobile handset 107 illustrated in FIG. 1) illustrated
in FIG. 4 (block 445) in accordance with an embodiment of
the present invention.

The method may comprise displaying user interface mes-
sages (block 540). Displaying user interface messages may
comprise using a customer-configured implementation for
starting an update. The method may also comprise determin-
ing whether a memory management system is initialized and
operational (block 541).

The method may also comprise opening a heap library
(block 542), wherein the memory environment for executing

20

25

30

35

40

45

50

55

60

65

14

the update may be established. The method may also com-
prise decompressing the update package 123 and producing a
pointer to the raw update package (block 543). Decompres-
sion may comprise employing the zlib decompression imple-
mentation by Bitfone Corp. Decompression may also com-
prise employing a produced pointer to point to the
decompressed update package employed for the update,
which may be located in the RAM 125.

The method may also comprise performing a security
check, such as an MD5 with RSA check, upon the update
package 123 data/code (block 544). The method may also
comprise initializing a checksum library and/ora CRC library
(block 545) and initializing an update agent engine (block
546). A global void pointer and an allocated checksum
pointer may be passed to an initialization routine during ini-
tialization. A global update structure may also be initialized.
In an embodiment according to the present invention, the
checksum pointer may be referenced by the global void
pointer and may not be passed to other functions.

The method may also comprise loading an update package
123 that the update agent engine may employ to build an
updated firmware/software image (block 547). Loading the
update package 123 may also comprise checking the validity
of the update package 123, both by evaluating the update
package size and by evaluating the calculated checksum. A
surveyor may support both an original firmware validation
and also identification of an update procedure interruption,
for example. The surveyor may be a component of the update
agent 113 or the boot loader 111, for example. For integra-
tions performed in a non-fault tolerant mode, the original
firmware validation may be run, but identification of an
update procedure interruption may be skipped. Skipping
identification of an update procedure interruption may be
accomplished by setting a device wrapper/driver function
related to the surveyor. The surveyor function may return an
index of recovery to be used later.

The method may also comprise validating an original firm-
ware 117 and monitoring the update (block 548). The method
may also comprise invoking an update transformation (trans-
form phase indicator) and sending a pointer and a recovery
index (block 549). The loop of instructions set forth above
may be repeated as many times as necessary until the update
is completed. The method illustrated in FIG. 5 ends at block
502, where the method may continue in FIG. 4 at block 446.

In an embodiment according to the present invention, inter-
face functions may be provided in a C file to adjust direction
between modules in the UASDK, for example. In an embodi-
ment according to the present invention, electronic device
integration may employ a baseline implementation, a library/
libraries, and a plurality of program calls. One implementa-
tion may comprise implementing a program call to a baseline
cyclic redundancy check, such as CRC32, for example.
Another implementation may comprise linking a thumb pre-
dictor, for example. Another implementation may comprise
implementing a baseline memory utility, for example.

In an embodiment according to the present invention,
header files may contain all the prototypes that are to be
implemented into the UASDK library/libraries for subse-
quent use during an update and incorporation into an update
package, for example. The UASDK may call a flash erase
function before a write-flash function.

To facilitate a non-fault-tolerant update of an update agent
113, the UASDK library/libraries may be compiled and
linked to the interface files and device wrapper files. The
output may be hexadecimal and/or plain binary form. The
entry point to be used may be 0x10000. A scatter load file,
such as for example, the file illustrated below may be used.

US 8,196,130 B2

15

FLASH 0x10000 0x800

FLASH 0x10000

{ uainito (Init, +First)
uabootmem.o
<anon=>

RAM__RO 0x1200000
* (+RO)
RAM_RWZI +0
* (+RW)
* (+71)

¥
¥

For a fault-tolerant update of the update agent 113, the
UASDK library/libraries may be compiled and linked to the
interface files and device wrapper files. The output here may
be in plain binary form.

To support fault tolerant updating of an update agent, such
as for example, update agent 113, tri-phase booting, as dis-
cussed above and with respect to FIG. 6 below, may be inte-
grated.

FIG. 6 is a flow diagram 605 illustrating an exemplary
initialization, validation, and fault tolerant method of updat-
ing an update agent 113 in an exemplary electronic device in
accordance with an embodiment of the present invention. In
FIG. 6, the method may start at (block 601). An electronic
device, for example, mobile handset 107 illustrated in FIG. 1,
may be started, booted or rebooted (block 606). The method
may also comprise initializing the electronic device, evaluat-
ing the update status indicator, for example, update status
indicator 205 illustrated in FIG. 2, and detecting/determining
whether an update package, such as for example update pack-
age 123 illustrated in FIG. 1 is present (block 616). If no
update package 123 is present and/or no update is currently to
be performed, the electronic device may initiate normal
operation (block 676) and the procedure may conclude at end
block 602.

In an embodiment according to the present invention, if an
update package 123 is detected based upon evaluation of the
update status indicator, for example update status indicator
205 illustrated in FIG. 2, the update agent, for example update
agent 113 illustrated in FIG. 1, may be validated (block 626).
Ifthe update agent 113 is determined to be valid, i.e., operable
and/or un-corrupted, the update may proceed to branch to the
update agent 113 (block 636), wherein the update may be
performed (block 686). Upon completion of the update, the
electronic device may start up again or reboot (block 606).
The electronic device may again evaluate the update status
indicator 205 and determine whether another update package
123 is present (block 616), or determine whether the update
has been completed. If no update package 123 is present, the
update is complete, and/or no update is currently to be per-
formed, the electronic device may initiate normal operation
(block 676) and the procedure may conclude at end block
602.

In an embodiment according to the present invention, if an
update package 123 is detected based upon evaluation of the
update status indicator, for example update status indicator
205 illustrated in FIG. 2, the update agent, for example update
agent 113 illustrated in FIG. 1, may be validated (block 626).
If the update agent 113 is determined to be invalid, inoper-
able, and/or corrupted, a backup or reserve copy of the update
agent 113, previously stored in non-volatile memory may be

20

25

30

35

40

45

50

55

60

65

16
accessed, invoked, and validated (block 646). [f the backup or
reserve copy of the update agent 113 is also determined to be
invalid, inoperable, and/or corrupted, a non-recoverable fail-
ure may occur (block 666) and/or the update may conclude at
end block 602.

However, if the backup or reserve copy of the update agent
113 is determined to be valid, operable, and/or un-corrupted,
the update may proceed to branch to the reserve copy of the
update agent 113 in the reserved unit/bank of memory (block
656), wherein the update may be performed (block 686).
Upon completion of the update, the electronic device may
start up again or reboot (block 606). The electronic device
may evaluate the update status indicator 205 and determine
whether another update package 123 is present (block 616). If
no update package 123 is present and/or no update is currently
to be performed, the electronic device may initiate normal
operation (block 676) and the procedure may conclude at end
block 602.

FIG. 7 is a block diagram illustrating an exemplary
memory configuration 705 of a flash memory for an exem-
plary electronic device, for example mobile handset 107 illus-
trated in FIG. 1, in accordance with an embodiment of the
present invention. The flash memory configuration 705 may
comprise a block of memory 781 storing an electronic device
boot code and an unspecified block of memory 779. The flash
memory configuration 705 may also comprise a block of
memory 778 storing an update agent (UA) boot 1 and another
block of memory 777 storing an update agent (UA) boot 2.
The flash memory configuration 705 may also comprise a
block of memory 776 storing a UA1 re-locatable code. The
block of memory 776 storing the UA1 re-locatable code may
also comprise a sub-block checksum 740. The checksum 740
may be 4 bytes long, for example.

In an embodiment according to the present invention, the
flash memory configuration 705 may also comprise a block of
memory 775 storing electronic device application(s), for
example. The flash memory configuration 705 may also com-
prise a block of memory 774 storing another UA boot 1 and
another block of memory 773 storing another UA boot 2. The
flash memory configuration 705 may also comprise a block of
memory 772 storing another UA1 re-locatable code.

In an embodiment according to the present invention, the
UA boot 1 stored in memory block 778 may be the same as the
UA boot 1 stored in memory block 774, for example. The UA
boot 2 stored in memory block 777 may be the same as the UA
boot 2 stored in memory block 773, for example. The UA 1
re-locatable code stored in memory block 776 may be the
same as the UA 1 re-locatable code stored in memory block
772, for example.

The block of memory 772 storing the UA1 re-locatable
code may also comprise a sub-block storing a checksum 740.
The checksum 740 may be 4 bytes long, for example. The
flash memory configuration 705 may also comprise another
unspecified block of memory 771.

In an embodiment according to the present invention, the
boot binary files UA boot 1 and UA boot 2, stored in memory
blocks 778 and 777, respectively, and/or 774 and 773, respec-
tively, may be functionally similar and may be involved in
update agent boot activities at different times. For example,
one binary UA boot file may be adapted to perform a boot-
strapping of the update agent 113 from an update agent
default start location (such as for example, 0x100000) and the
other binary UA boot file may be adapted to perform a boot-
strapping of the update agent 113 from a reserved unit loca-
tion (such as for example, 0x670800). Therefore, the UA boot
1 and the UA boot 2 binary files may perform the same

US 8,196,130 B2

17

function but on update agents stored in and invoked from
different memory locations having different memory
addresses.

In an embodiment according to the present invention, UA
boot 1 may be adapted to initialize and relocate the update
agent re-locatable code from an update agent write unit to
RAM, for example, RAM 125 illustrated in FIG. 1.

In an embodiment according to the present invention, UA
boot 2 may be adapted to initialize and relocate the update
agent re-locatable code from an update agent reserved write
unit to RAM, for example, RAM 125 illustrated in FIG. 1.

In an embodiment according to the present invention, the
update agent re-locatable code, along with the bootstrap code,
for example, UA boot 1 and/or UA boot 2, may be copied
from default locations near 0x100000 to a reserved unit (re-
served memory location) to ensure fault tolerant updating just
prior to initiating a fault tolerant update of the update agent
113 in the electronic device.

FIG. 8 is a block diagram illustrating an exemplary
memory configuration 805 of a flash memory during an
update of an update agent 113 for an exemplary electronic
device in accordance with an embodiment of the present
invention. The flash memory configuration 805 may comprise
ablock of memory 888 storing an electronic device boot code
and an unspecified block of memory 887. The flash memory
configuration 805 may also comprise an erased block of
memory 886. The flash memory configuration 805 may also
comprise a block of memory 885 storing an electronic device
application(s). The flash memory configuration 805 may also
comprise a block of memory 884 storing a UA boot 1 and a
block of memory 883 storing another UA boot 2. The flash
memory configuration 805 may also comprise a block of
memory 882 storing a UA1 re-locatable code. The block of
memory 882 storing the UA1 re-locatable code may also
comprise a sub-block storing a checksum 840. The checksum
840 may be 4 bytes long, for example. The flash memory
configuration 805 may also comprise another unspecified
block of memory 881.

FIG. 9 is a block diagram illustrating an exemplary
memory configuration 905 of a flash memory after a com-
pleted update procedure of an update agent 113 for an exem-
plary electronic device in accordance with an embodiment of
the present invention. The flash memory configuration 905
may comprise a block of memory 996 storing an electronic
device boot code and an unspecified block of memory 995.
The flash memory configuration 905 may also comprise a
block of memory 994 storing the updated update agent. The
flash memory configuration 905 may also comprise a block of
memory 993 storing an electronic device application(s). The
flash memory configuration 905 may also comprise a
reserved unit block of memory 992. The flash memory con-
figuration 905 may also comprise another unspecified block
of memory 991.

In an embodiment according to the present invention, the
updated update agent 113 may remain associated with UA
boot 1 and UA Boot 2 in order to support further updates to the
updated update agent 113.

In an embodiment according to the present invention, to
integrate a variation on the tri-phase boot method, an elec-
tronic device image may be built by modifying a pair of
update agent scatter load files as set forth below.

The following exemplary first scatter load file may refer to
two binary files that may be employed as outputs. At linking
time, the entry point used may be 0x10000. The output files
may be used in running a batch file, for example. For debug-
ging purposes, an executable and linking format (ELF) file
may also be employed.

20

25

30

35

40

45

50

55

60

65

18

FLASH 0x10000 0x800

FLASH 0x10000

uainit.o (Init, +First)
uabootmem.o
<anon=>

RAM_UA 0x11000
RAM__RO 0x1200000
* (+RO)
RAM_RWZI +0
* (+RW)
* (+71)

¥
¥

The following exemplary second scatter load file may also
refer to two binary files that may be employed as outputs. At
linking time, the entry point used may be 0x670800. The
output files may be used in running a batch file, for example.
For debugging purposes, an executable and linking format
(ELF) file may also be employed.

FLASH 0x670800 0x800

FLASH 0x670800

uainit.o (Init, +First)
uabootmem.o
<anon=>

RAM__UA 0x671000
RAM__RO 0x1200000
* (+RO)
RAM_RWZI +0
* (+RW)
* (+71)

¥
¥

To make three binary files into one update agent executable
binary file, the three binary files may be merged. In an
embodiment according to the present invention, an exemplary
utility tool may be employed to merge multiple binary files.
The following is an exemplary command that may be used to
accomplish the merge in an embodiment according to the
present invention.

binmerge —o ua.bin 0x10000 0x10000 —f flash1 0x10000 flash2
0x10800 ram__rol 0x11000

In an embodiment according to the present invention, the
validity of the update agent may be checked before invoking
the update agent. To support a validity check of update agent,
a checksum computation may be added to the update agent
binary image at a checksum location. In an embodiment
according to the present invention, an exemplary utility tool

US 8,196,130 B2

19

may be employed to incorporate the checksum into the image
file. The following are exemplary command(s) may be
employed.

mesfile —o ua__cs.bin ua.bin Oxffde —c cre32
binmerge —o uadl.bin 0x10000 0x10000 —f ua.bin 0x10000
ua__cs.bin Ox1ffdc

In an embodiment according to the present invention, an
exemplary utility tool may be employed as a batch file for
merging the binary files and incorporating the checksum for
the update agent binary code as described above. To execute
the batch file, an attached file containing the checksum for the
update agent binary file may be copied into an appropriate
directory.

In an embodiment according to the present invention, the
boot loader 111 may detect the update status of the update
agent and may also validate the update agent 113. Similarly,
a cyclic redundancy check (for example, CRC32) based
checksum computation code may also be incorporated into
the electronic device image build environment for performing
the computations.

Additional build commands for electronic device images
may also be employed after creating a current electronic
device image. The build commands may facilitate merging
the update agent 113 and the electronic device image, for
example.

While the present invention has been described with refer-
ence to certain embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted without departing from the
scope of the present invention. In addition, many modifica-
tions may be made to adapt a particular situation or material
to the teachings of the present invention without departing
from its scope. Therefore, it is intended that the present inven-
tion not be limited to the particular embodiment disclosed,
but that the present invention will include all embodiments
falling within the scope of the appended claims.

What is claimed is:

1. A computer-readable storage medium comprising
instructions for updating firmware or software in a mobile
handheld electronic device, the computer-readable storage
medium comprising:

an update address block of memory,

an update address stored in the address block of memory

identifying where a package of update information for
use by an updating software is stored in the mobile
handheld electronic device;

areturn block of memory comprising a value to be returned

when updating the electronic device has been com-
pleted;

an indicator block of memory comprising a plurality of

status indicators;

wherein contents of one or more of the update address

block of memory, the return block of memory, and the
indicator block of memory are received by the mobile
handheld electronic device before updating of the firm-
ware or software; and

wherein if it is determined that applying the package of

update information updates the updating software based
on at least one of the plurality of status indicators, the
mobile handheld electronic device then executes
instructions to cause the mobile handheld electronic
device to perform a method comprising:

20

25

30

35

45

50

55

60

65

20

before the updating software is modified, saving a copy
of the updating software in a reserved flash bank
within a particular flash memory section of non-vola-
tile memory;

after saving the copy, processing the package of updat-
ing information that updates the updating software;
and

after processing the package of update information,
completing a tri-phase boot process using an update
agent boot within the particular flash memory section,
the tri-phase boot process involving a subsequent ini-
tialization, a validity check, and a branching function-
ality to branch between the updated updating software
and the saved copy of the updating software, both
within the particular flash memory section, based on
the validity check.

2. The computer-readable storage medium according to
claim 1, wherein the plurality of status indicators are
employed by updating software for processing a plurality of
executable instructions for converting a first version of firm-
ware or software to a second version of firmware or software.

3. The computer-readable storage medium according to
claim 1, wherein at least one of the plurality of status indica-
tors is employed to indicate that an update is present in the
electronic device and that an update is to be performed.

4. The computer-readable storage medium according to
claim 1, wherein at least one of the plurality of status indica-
tors is employed to indicate whether the firmware or software
to be updated is valid and capable of being updated.

5. The computer-readable storage medium according to
claim 1, wherein at least one of the plurality of status indica-
tors is employed to indicate which phase of the update is
currently performing.

6. The computer-readable storage medium according to
claim 1, wherein at least one of the plurality of status indica-
tors is employed to indicate that the update of the firmware or
software to be updated is completed.

7. A method comprising:

booting a mobile handheld electronic device comprising

updating software;

receiving one or more of:

an update address identifying where a package of update
information is stored in the mobile handheld elec-
tronic device,

a value to be returned when updating the mobile handheld

electronic device has been completed,
a plurality of status indicators, and
the package of information for updating firmware or
software in the mobile handheld electronic device,
before updating of the firmware or software, wherein one
of the plurality of status indicators indicates that the
updating software is to be updated;

reserving a portion within a particular flash memory sec-

tion of non-volatile memory and backing up code and
information of the updating software before updating,
and storing a copy of the updating software in the
reserved portion, if the one of the plurality of status
indicators indicates that the updating software is to be
updated;

storing the package of information within an additional

portion of the particular flash memory section of non-
volatile memory;

updating the firmware or software in the mobile handheld

electronic device using the package of information,
wherein updating the software or firmware in the mobile
handheld electronic device comprises executing a plu-
rality of executable instructions for converting a first

US 8,196,130 B2

21

version of the software or firmware to a second version
of the software or firmware; and

after processing the package of information, completing a
tri-phase boot process using an update agent boot within
the particular flash memory section, the tri-phase boot
process involving a subsequent initialization, a validity
check, and a branching functionality to branch between
updated updating software and the stored copy of the
updating software, both within the particular flash
memory section, based on the validity check.

8. The method according to claim 7, wherein the updating

software is updatable in a fault tolerant manner.

9. The method according to claim 7, comprising storing the
software and firmware in a compressed form and decom-
pressing the software and firmware into random access
memory for processing or updating.

10. The computer-readable storage medium according to
claim 1, the computer-readable storage medium comprising:

a software component adapted to survey and validate soft-
ware or firmware to be updated in the mobile handheld
electronic device to determine that the software or firm-
ware is capable of being updated; and

wherein the software component operates to identify an
update interruption, when operating in a first mode, and
the software component does not operate to identify the
update interruption, when operating in a second mode.

11. The computer-readable storage medium according to
claim 10, wherein identifying an update interruption provides
a fault tolerant update and permits an interrupted update to be
re-initiated where the interruption occurred.

12. A computer-readable storage medium for updating
software or firmware in a mobile handheld electronic device,
the computer-readable storage medium comprising:

a device independent updating software component for
updating software or firmware in the mobile handheld
electronic device;

an operating system software component;

a firmware component corresponding to the mobile hand-
held electronic device; one or more software interface
components that facilitate interaction between elec-
tronic device specific software comprising one or both of
the operating system software component and the firm-
ware component and application specific software com-
prising the device independent updating software com-
ponent;

an update address block of memory,

an update address stored in the update address block of
memory identifying where an update package for use by
the device independent updating software component is
stored in the mobile handheld electronic device;

areturn block of memory comprising a value to be returned
when updating the mobile handheld electronic device
has been completed;

20

25

30

35

40

45

50

22

an indicator block of memory comprising status informa-

tion;

wherein contents of one or more of the update address

block of memory, the return block of memory, and the
indicator block of memory are received by the mobile
handheld electronic device before updating of the firm-
ware or software;

wherein the mobile handheld electronic device is adapted

to manage and adjust one or more of status information,
update variables, and/or update functions; and

wherein if it is determined based on at least one of the one

or more of status information that the update package

has been received to update updating software, the

mobile handheld electronic device then executes

instructions to cause the mobile handheld electronic

device to perform a method comprising:

before the updating software is modified, saving a copy
of the updating software in a reserved flash bank
within a particular flash memory section of non-vola-
tile memory;

after saving the copy, processing the update package to
update the updating software; and

after processing the update package, completing a tri-
phase boot process using an update agent boot within
the particular flash memory section, the tri-phase boot
process involving a subsequent initialization, a valid-
ity check, and a branching functionality to branch
between the updated updating software and the saved
copy of the updating software, both within the par-
ticular flash memory section, based on the validity
check.

13. The computer-readable storage medium according to
claim 12, wherein electronic device specific software com-
prises

software adapted to operate in a mobile handheld elec-

tronic device of a pre-determined manufacturer.

14. The computer-readable storage medium according to
claim 12, wherein application specific software comprises
software adapted to perform a specific function that is inde-
pendent of a mobile handheld electronic device.

15. The computer-readable storage medium according to
claim 12, comprising software interfacing proprietary elec-
tronic device firmware or software and proprietary applica-
tion specific updating software independent of a mobile hand-
held electronic device of a particular manufacturer.

16. The computer-readable storage medium according to
claim 12, wherein the mobile handheld electronic device is
adapted to perform a memory erase function before a memory
write function for at least one component of a memory mod-
ule.

