US007971199B1

a2 United States Patent 10) Patent No.: US 7,971,199 B1
Chen (45) Date of Patent: Jun. 28, 2011
(54) MOBILE DEVICE WITH A SELF-UPDATING g,ggg,iig i g; }ggg ?ealkO_WSkil etal.
A K amori et al.
UPDATE AGENT IN A WIRELESS NETWORK 6009497 A 12/1999 Wells et al,
. .. 6,038,636 A 3/2000 Brown, III et al.
(75) Inventor: Shao-Chun Chen, Aliso Viejo, CA (US) .
(Continued)
(73) Assignee: Hewlett-Packard Development FORFIGN PATENT DOCUMENTS
Company, L.P., Houston, TX (US)
CA 2339923 A 3/2000
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 1147 days. OTHER PUBLICATIONS
Kim Oppalfens, Scem 2007 client agent deployment suing software
(21) Appl. No.: 11/120,556 updates [online], 2007 [retrieved on May 3, 2011], pp. 1-3. Retrieved
) from the Internet: <URL: http://blogcastrepository.com/blogs/kim__
(22) Filed: May 3, 2005 oppalfenss_ systems__management ideas/archive/2007/05/19/
scem-2007-client-agent-deployment-using-software-updates.
Related U.S. Application Data aspx>.*
(60) Provisional application No. 60/567,894, filed on May (Continued)
3,2004.
Primary Examiner — Thuy Dao
(51) Int.CL Assistant Examiner — Hanh T Bui
GO6F 9/44 (2006.01)
GO6F 15/177 (2006.01) 57 ABSTRACT
(52) U..S. Cl 717/168, 709/220, 709/221 A mobile device with a self-backup mechanism may conduct
(58) Field of .Cla.s51ﬁcat10n Search S None an implicit backup of update agent code during an update of
See application file for complete search history. firmware in the electronic device, using a package of update
. information. Another embodiment may perform an explicit
(56) References Cited

U.S. PATENT DOCUMENTS

backup of update agent code before the update of other firm-
ware is performed. In an electronic device employing NAND
flash non-volatile memory for firmware storage, a boot code

5,261,055 A 11/1993 Moran et al. may copy all firmware, including update agent code, from the
2’347%’;;; ﬁ lgﬁggg ililsﬂll’ae;:lé tal non-volatile memory to RAM for execution. A determination
5579522 A 11/1996 Christecslon ot al. may be made whether a backup copy of update agent code
5,596,738 A 1/1997 Pope exists, and the existing update agent code may be updated by
5,598,534 A 1/1997 Haas a copy of the update agent code stored in an area in RAM. An
5,608,910 A 3/1997 Shimakura updated update agent code may be capable of employing
5,623,604 A 4/1997 Russell et al. d d d by old upd d 1
5.666.293 A 0/1997 Metz of al. update status data used by old update agent code, as well as
5752039 A 5/1998 Tanimura update status data used by an updated update agent code.
5,778,440 A 7/1998 Yiuetal.
5,790,974 A 8/1998 Tognazzini 22 Claims, 10 Drawing Sheets
105
\. RAM 125
r I‘D?)v‘is_ioniTg a Appl.
| _ Server I I~ 135
—1" "
~-133
Download 1
Server 4_(- \‘131
Update
Bevies) | M Agent_| 29
Management
1 server | Boot N |
- == Loader [~127
16; Distribution Network NV Memory |~1123
l OREN
Mobile Device
Manufacturer's
Environment

k111

US 7,971,199 B1

Page 2
U.S. PATENT DOCUMENTS 2002/0188886 Al* 12/2002 Liuetal. ...cccooovvvrvrenrnnn, 714/6
6041333 A * 3/2000 Bretschneideretal. 1 %883;882822 ﬁ} %883 ﬁfﬂ“gfg;:gle
6064814 A 52000 Capriles et al 2003/0061384 Al 3/2003 Nakatani
0.073.206 & G2000 Piwonka et al. 2003/0182414 AL* 9/2003 O'Neill ..o 709/223
6’088,759 A 72000 Hasbun et al 2004/0031027 Al* 2/2004 Hlltgen . .. 717/170
6’105,063 A 82000 I T ' 2004/0092255 Al* 5/2004 Jietal. ... 455/419
Bt ayes, I 2004/0103340 Al* 5/2004 Sundareson et al. o T14/6
6,112,024 A~ 8/2000 Almond et al. 2004/0123282 Al* 62004 Rao 717/168
6,112,197 A 8/2000 Chatterjeeetal. 500 094001 ATE 199004 rretafann ot ol
il .) 2004/0243991 Al* 12/2004 Gustafson et al. ... 717/168
6,126,327 A 10/2000 Bi etal. 2005/0204353 Al* 9/2005 li 717/168
6,128,695 A = 10/2000 Estakhri et al. 2005/0257214 Al* 11/2005 Moshir et al. ... 17T
6,145012 A * 11/2000 Small ...oococooocoorrerrron 709/246 * 122007 Kummshao ot ol 217/168
6.157.559 A 122000 Yoo 2007/0294684 Al umashiro et al. . .
6,163,274 A 12/2000 Lindgren FOREIGN PATENT DOCUMENTS
6,198,946 Bl 3/2001 Shin et al.
6,279,153 Bl 82001 Bietal. JP 8202626 A 8/1996
6,311,322 Bl 10/2001 Tkeda et al. KR 2002-0034228 Al 5/2000
6,321,263 B1* 11/2001 Luzzietal.oco..... 709/224 KR 20010100328 Al 11/2001
6,438,585 B2 8/2002 Mousseau et al.
6,457,175 B1* 9/2002 Lercheccccoovvvenrnne. 717/173 OTHER PUBLICATIONS
6,536,038 Bl : 3/2003 Ewertzetal. .. - 717/168 J. Probst et al., Flexible configuration and concurrent upgrade for the
6,594,723 BL™ 7/2003 Chapman et al. - TH103 - 1BM eServer z900 [online], 2002 [retrieved on May 3, 20111, pp. 1-8.
6,684,396 B1* 1/2004 Brittainetal. 717/168 .) . ;. .
6,880,051 B2* 4/2005 Timpanaro-Perrotta 711/162 Retrle\fed from the Internet: <URL: http://ieeexplore.ieee.org/stamp/
7,080,372 BL* 7/2006 Cole ..oooovccrvreer. . 717/173 stampjsp?tp=&armumber=5389018).*
7,350,205 B2* 3/2008 Ji oo, 717172 “Focus on OpenView a guide to Hewlett-Packard’s Network and
7,415,706 Bl1* 8/2008 Raju et al. . 717/170 Systems Management Platform”, Nathan J. Muller, pp. 1-291, CBM
7,689,981 Bl1* 3/2010 Gustafson . 717/168 Books, published 1995.
7,698,698 B2* 4/2010 Skan 717/168 “Client Server computing in mobile environments”, J. Jing et al,
7,725,889 B2* 5/2010 Gustafson et al. . . 717/168 ACM Computing Surveys, vol. 31, Issue 2, pp. 117-159, ACM Press,
7,797,693 Bl * 9/2010 Gustafson et al. . . 717/168 Jul. 1999.
2001/0029178 Al* 10/2001 Crissetal. 455/419 “ESW4: enhanced scheme for WWW computing in wireless com-
2001/0047363 Al 11/2001 Peng munication environments”, S. Hadjiefthymiades, et al, ACM
2001/0048728 Al 12/2001 Peng SIGCOMM Computer Communication Review, vol. 29, Issue 5, pp.
2002/0078209 Al 6/2002 Peng 24-35, ACM Press, Oct. 1999.
2002/0087668 Al* 7/2002 San Martin etal. 709/221 “Introducing quality-of-service and traffic classes in wireless mobile
2002/0092010 Al* 7/2002 Fiske .ccoooerveevcnnncnnee 717/168 networks”, J. Sevanto, et al, Proceedings of the 1** ACM international
2002/0100036 Al* 7/2002 Moshiretal. 717173 workshop on Wireless mobile multimedia, pp. 21-29, ACM Press,
2002/0116261 Al 8/2002 Moskowitz et al. 1998.
2002/0131404 Al 9/2002 Mehta et al. “Any Network, Any Terminal, Anywhere”, A. Fasbender et al, IEEE
2002/0152005 Al 10/2002 Bagnordi Personal Communications, Apr. 1999, pp. 22-30, IEEE Press, 1999.
2002/0156863 Al 10/2002 Peng
2002/0157090 Al 10/2002 Anton, Jr. * cited by examiner

US 7,971,199 B1

Sheet 1 of 10

Jun. 28, 2011

U.S. Patent

| "B14

601 ~

€ClT
R4S

61

LEL~

€el

GEL ~

Ggcl

901A8Q S]IqON

AIOWBIN AN

JOpEOT
N 1009

1uaby
N s1epdn

N osemuuiy

SO

ANVH

LLL
D)

JUSWIUOIIAUT
s Jainjoeinue|y

lojelausn

—6€1

NQ\«

Ll

}OMJBN uonNquisiq

_ JONIBS _
Juswabeuep
| someq _

— 2

Janisg
peojumoq

__L_

_ JonIag _
Buiuoisinoid |_

b —_— — -

L0l

Gol

US 7,971,199 B1

Sheet 2 of 10

Jun. 28, 2011

U.S. Patent

0}

Yyouelq 0} W uaIym
SOPI03P 8pP02 100g

Z ‘b4

9poJ jo0gd

nuN 81N 1usby arepdn

602~

_/

J0)JBJIBUSD)
ay} Agq pajonssul
Hysisdy oy aq |im siyl

JUN BYLAN POAJESEY

LLc

G0¢c

US 7,971,199 B1

Sheet 3 of 10

Jun. 28, 2011

U.S. Patent

¢ b4

1008 "
QOM /.\\ juaby ajepdn
Apoauip WvH \
a8y} 0} youeiq usy) \
‘AW 8y} 0} papeo|
s1 [Jo Adod yoiym \
SOpIoap 9p02 J00yg ‘| \ NOLLYOIddY
/]
\ €Le
SIEN ¥
VN 103 WYY | — — — dmjoeq yn Joj |00 l——
e |

v/ 90¢

L0€

Jles) vn syl
Aq auop si dnyjoeq
ay) ‘Ajinjssaons
painoexe aq

ued yM 8y} 82uQ ‘2

Go€E

US 7,971,199 B1

Sheet 4 of 10

Jun. 28, 2011

U.S. Patent

01

Apdauip NvY
8y} 0) youelq usy ‘Y aul

0] papeo| 89 uea yn 1o Adoo —~
UOIUM SBPIOap 8p02 J00g 'Z L0t
10049
\
BLY] 1uaby syepdn wisby epepdn
, 607
i
0cvy / ‘(anop
-dINS Yum) yesy vn
ay) Ag auop sI dmyoeq
Bul ‘
o>o_>_-c_:,m w«;ﬂ& A _ T _A NOILYDITddY 9%0 hwﬁmmm% Mw
/ 0] BIEP YSE|l 8joym UBd YN @Y1 90uQ '€
— 8y} peo| spoo jo0d |
AR 4 / A4
cly
k Y \
— ac_mwﬂm\,_m_ﬁ%_wv @ — —— — dmpequniojood feg—rd
Gy —
LY N

1017

GOy

US 7,971,199 B1

Sheet 5 of 10

Jun. 28, 2011

U.S. Patent

LS

Jojelauan
ay}

0} Ajjenba
pajeal; s
uonewJoyul
ayL

G ‘b1

205 (\ 1008
60G
Juaby ajepdn (\
o
O
o
AU g|g
o< NOILVOIddVY
olc
oy [11]
[0}
c
O
L~
€S8
dnyoeq vn 10} [00d T LS

/. 90S

Gos

US 7,971,199 B1

Sheet 6 of 10

Jun. 28, 2011

U.S. Patent

9 '6i4

(\WNO (dmyoegyles g F@
erogm) |
—— uoifel |l

uonnoaxe ayy
ul vn 0} yourig

ajepdn
aly ulopad

(8nJ} = dnypegyes) l.\ (asiey u%%mx%me_mmv
pasn 8q o} s1 dmpegHies \ aq o} J0u s1 dmjoeg-jes
€9
(Adoo sa1nog) @ F@ (Adoo dropoeg) _‘ FO
uolBai uoibas uonnoaxa
UORNoAXa Y[B4} O} UOREIO| !\ VN 2y} 01 uogeoo| dnyoeq {\
30UN0S Y} WO Y BY} peo] 8y} Wwoy v 8y} peo]

<paunuspl
Adoo 50.n0S JO WINSYO8YD
pue Jaquinu dibew

cpaghuapl
Adoo dnyoeq Jo wnsyoayd
pue Jaqunu o1bew

o043 jeed

609

209

G09

U.S. Patent

705

715

Jun. 28, 2011

707

Sheet 7 of 10

Bootup

709

Load Data to RAM

Y

Load the backup UA to the
execution region

711 (Backup copy)
YES umber and checksu
identified in backup
713

717

Duplicate the UA from the
data RAM to the UA
execution region
(Source copy)

719

y

Magic
umber and checksu
identified in source
copy?

NO

725

YES

Self-Backup is not required
(selfBackup = false)

Self-Backup is required
(selfBackup = true)

721

l

Fatal Error

US 7,971,199 B1

Branch to UA in
the execution

723

/D

———

region
(with the var

selfBackup)

Perform the
update or branch
to the application

727

Fig. 7

U.S. Patent Jun. 28, 2011

805

G

Sheet 8 of 10

v

Housekeeping

wer”_surveyor_getREws
eeindex() passed

YES

808

809

811

elf-backup

Duplicate the
Update Agent to
the backup region

817

Backup
copy verified? (e.g.,
byte by byte)

NO

Terminate

)
835

,\

Destroy the backup
copy of the Update
Agent

Y

~
823

ua_engine_eraseTemp
oraryWriteUnits()

822

Housekeeping

Process
accomplished

825

US 7,971,199 B1

Terminate

831~

U.S. Patent Jun. 28, 2011 Sheet 9 of 10 US 7,971,199 B1

&

908 Housekeeping

909 Terminate
qelndex() passed
YES
931

Duplicate the
Update Agent to /\91 3

the backup region

€ backup copy taQ
be verified. (byte by
byte)

933 NO
Terminate 3 NO da_engine_transform
y passed

NO

YES 91 7 YES
935 Y
\ Terminat we_engine_erase Tempore
erminate yWriteUnits() passed

919

Destroy the backup
/ copy of the Update |

92 1 Agent
922 Housekeeping

Process
accomplished

923

US 7,971,199 B1

Sheet 10 of 10

Jun. 28, 2011

U.S. Patent

0l b4

1eby s1epdn syl

NOID3Y
WNSHD3IHO

\

yun
aylum Juaby a1epdn
8y} 10 SSIAg 9 IseT] \

6001
L/

\
an :ovv/

Bus [0}
UOISISA

wnsyo8yn

N

JequinN o16en

Gool

US 7,971,199 B1

1
MOBILE DEVICE WITH A SELF-UPDATING
UPDATE AGENT IN A WIRELESS NETWORK

RELATED APPLICATIONS

The present application makes reference to, claims priority
to, and claims benefit of U.S. Provisional Patent Application
Ser. No. 60/567,894, entitled “MOBILE DEVICE WITH A
SELF-UPDATING UPDATE AGENT IN A WIRELESS
NETWORK?”, filed May 3, 2004, the complete subject matter
of which is hereby incorporated herein by reference, in its
entirety.

The present application makes reference to PCT Applica-
tion having publication number W0/02/41147 Al and PCT
Application No. PCT/US01/44034, entitled “System and
Method for Updating and Distributing Information™, filed
Nov. 19,2001, the complete subject matter of which is hereby
incorporated herein by reference, in its entirety.

The present application also makes reference to U.S. Pro-
visional Patent Application Ser. No. 60/249,606, entitled
“System and Method for Updating and Distributing Informa-
tion”, filed Nov. 17, 2000, the complete subject matter of
which is hereby incorporated herein by reference, in its
entirety.

The present application also makes reference to U.S. patent
application Ser. No. 10/932,175, entitled “Tri-Phase Boot
Process In A Mobile Handset”, filed Sep. 1, 2004, the com-
plete subject matter of which is hereby incorporated herein by
reference, in its entirety.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

[Not Applicable]

MICROFICHE/COPYRIGHT REFERENCE

[Not Applicable]

BACKGROUND OF THE INVENTION

Electronic devices, such as mobile phones and personal
digital assistants (PDA’s), often contain firmware and appli-
cation software that are either provided by the manufacturers
of the electronic devices, by telecommunication carriers, or
by third parties. Electronic devices, such as high-end mobile
phones, often contain a flash memory card, sometimes called
an MMC card. They contain a flash memory card reader that
is employed to read information on the flash memory cards
that are inserted by end users.

Quite often, flash memory cards are used by the end user to
store content such as digital photographs or audio files.

If firmware or firmware components are to be changed, itis
often very tricky to update the firmware components in an
electronic device. The electronic device must have sufficient
memory available to download an update package and to
execute an update process. Changes to firmware or firmware
components of the electronic device must be performed in a
fault tolerant mode and fault tolerant code are not easy to
implement.

Typically, attempts to upgrade firmware and/or software in
electronic devices, such as GSM mobile phones, are often
hampered by limited user interaction capabilities and slow
communication speeds on these devices. Typically, end user
interactions cannot be relied upon to help fix problems with a
device, as user input can be erroneous. In addition, some
electronic devices may not have sufficient memory to store a

20

25

30

35

40

45

50

55

60

65

2

large update package. Some devices with an update agent
used for updating firmware and/or software are not capable of
updating the update agent itself.

Further limitations and disadvantages of conventional and
traditional approaches will become apparent to one of skill in
the art, through comparison of such systems with some
aspects of the present invention as set forth in the remainder of
the present application with reference to the drawings.

BRIEF SUMMARY OF THE INVENTION

A method and/or device supporting firmware update using
an update agent in a mobile device, substantially as shown in
and/or described in connection with at least one of the figures,
as set forth more completely in the claims.

These and other advantages, aspects and novel features of
the present invention, as well as details of an illustrated
embodiment thereof, will be more fully understood from the
following description and drawings.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 is perspective block diagram of an exemplary
mobile network comprising a mobile device with a non-
volatile memory, a distribution network with which the
mobile device is communicatively coupled via a communi-
cation path, and an optional manufacturer’s environment
communicatively coupled to the distribution network via a
communication path, in accordance with a representative
embodiment of the present invention.

FIG. 2 is a block diagram of an exemplary memory
arrangement used by a tri-phase boot technique in a mobile
device such as the mobile device of FIG. 1, for example, that
is capable of updating its own update agent that may corre-
spond to, for example, the update agent of FIG. 1, and
wherein the backing up of the update agent in the mobile
device is implicit to the update agent itself, in accordance with
a representative embodiment of the present invention.

FIG. 3 is a block diagram of an exemplary memory
arrangement used by a tri-phase boot technique in a mobile
device such as the mobile device of FIG. 1, for example, that
employs NOR flash NV memory wherein an update agent
resident in the NOR flash NV memory is capable of perform-
ing a self-backup, in accordance with a representative
embodiment of the present invention.

FIG. 4 is a block diagram of an exemplary memory
arrangement used by a tri-phase boot technique in a mobile
device such as the mobile device of FIG. 1, for example, that
employs NAND flash NV memory wherein an update agent
resident in the NAND flash NV memory is capable of per-
forming a self-backup, in accordance with a representative
embodiment of the present invention.

FIG. 5 is a block diagram that depicts an exemplary
memory layout of a electronic device that may correspond to,
for example, the mobile device of FIG. 1 in which a generator
processes an update agent portion and application portion of
NV memory as one updateable entity, in accordance with a
representative embodiment of the present invention.

FIG. 61is aflowchart of an exemplary tri-phase boot process
in a NOR memory based electronic device that may corre-
spond to, for example, the mobile device of FIG. 1 in which an
update agent such as the update agent of FIG. 3 conducts a
self-backup, in accordance with a representative embodiment
of the present invention.

FIG. 71is aflowchart of an exemplary tri-phase boot process
in an electronic device employing NAND-based non-volatile

US 7,971,199 B1

3

memory such as the mobile device of FIG. 1, in which an
update agent such as, for example, the update agent of FIG. 4
conducts a self-backup, in accordance with a representative
embodiment of the present invention.

FIG. 8 is a flowchart illustrating an exemplary update pro-
cess, in accordance with a representative embodiment of the
present invention.

FIG. 9 is a flowchart illustrating another exemplary update
process, in accordance with a representative embodiment of
the present invention.

FIG. 10 depicts a memory image of an exemplary update
agent write unit in which the last 64 bytes of the update agent
write unit are used for the determination/identification/veri-
fication purposes described above, in accordance with a rep-
resentative embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Aspects of the present invention relate generally to the
process of updating software/firmware in electronic devices,
and more specifically, to the use of an update agent for updat-
ing firmware/software in an electronic device. The following
discussion makes reference to the term “electronic device”
that is used herein to refer to mobile electronic devices such
as, for example, a mobile handset, a cellular phone, a personal
digital assistant (PDA), a pager, and a personal computer, to
name just a few. Although the listed example electronic
devices are mobile devices, application of the present inven-
tion is not limited in this manner, as representative embodi-
ments of the present invention may be employed in a wide
variety of electronic devices, both fixed and mobile.

Electronic devices may be adapted to access servers to
retrieve update information for updating memory in the elec-
tronic devices. An electronic device may be, for example, a
mobile electronic device having firmware/software such as
mobile cellular phone handsets, personal digital assistants
(PDAs), pagers, MP-3 players, digital cameras, etc. Update
information may comprise information that modifies or
changes firmware/software and/or software components
installed in the electronic device. In a representative embodi-
ment of the present invention, update information may com-
prise a set of executable instructions for converting a first
version of code to an updated/second version of code. The
update information may add new services to the electronic
device, as desired by a service provider, device manufacturer,
or an end-user, and/or may fix bugs (e.g., software errors) in
the operating code of the electronic device. In a representative
embodiment of the present invention, update information
may comprise an update package.

FIG. 1 is perspective block diagram of an exemplary
mobile network 105 comprising a mobile device 109 with a
non-volatile memory 123, a distribution network 107 with
which the mobile device 109 is communicatively coupled via
a communication path 113, and an optional manufacturer’s
environment 111 communicatively coupled to the distribu-
tion network 107 via a communication path 137, in accor-
dance with a representative embodiment of the present inven-
tion. The manufacturer’s environment 111 may comprise a
generator 139 that generates update packages that are distrib-
uted by the distribution network 107 to the mobile device 109.
The communication paths 113, 137 may comprise, for
example, a wire or wireless link such as a cellular network, an
intranet network, an Internet network, a public switched tele-
phone network, to name only a few. The update package may
comprise, for example, a set of executable instructions for
converting a first version of code to a second version of code.
An example of a generator and set of instructions in accor-

20

25

30

35

40

45

50

55

60

65

4

dance with a representative embodiment of the present inven-
tion may be found in the PCT Application having publication
number W0O/02/41147 Al and PCT Application No. PCT/
US01/44034, entitled “System and Method for Updating and
Distributing Information”, filed Nov. 19, 2001, the complete
subject matter of which is hereby incorporated herein by
reference, in its entirety.

As shown in FIG. 1, the mobile device 109 comprises the
non-volatile memory 123 and a RAM 125. The non-volatile
memory 123 comprises a boot loader 127, an update agent
129 used to update a firmware and/or software in the non-
volatile memory 123 of the mobile device 109, a firmware
131, an operating system (OS) 133 and applications 135. The
update agent 129 may be employed by the mobile device 109
to update firmware and/or software resident in the NV
memory 123. In a representative embodiment of the present
invention, the update agent 129 may be referred to as ‘close-to
the-metal’ (i.e., closely coupled to the hardware circuitry of
the mobile device 109), and may be part of the firmware 131
of the mobile device 109. The update agent 129 may be
capable of updating the firmware 131 in a fault-tolerant mode,
using a bank-by-bank update process. The status of the update
activity may not be progressively stored, but may be deter-
mined using pre-computed cyclic redundancy checks (CRCs)
or digital signatures provided in an update package retrieved
from the distribution network 107.

In a representative embodiment in accordance with the
present invention, update agent code such as the update agent
129 of FIG. 1, for example, may be self-updating, i.e. it may
be capable of updating its own code. In one representative
embodiment of the present invention, the update package may
provide information (e.g., a flag, variable, or parameter) to
indicate that the update package contains information that
may be used to update the update agent 129 itself. In such a
representative embodiment, the update agent 129 may deter-
mine based on, forexample, a ‘UA_Update’ flag, whether it is
desired that the update agent 129 back itself up (e.g., for
fault-tolerance) before an update of the update agent 129 is
attempted. If this “UA_Update’ flag is set to indicate that the
update package does not affect the update agent code, then the
update agent 129 may elect not to back up its own code.

In another representative embodiment of the present inven-
tion, the update agent 129 may create a backup of the its own
code before starting the update process, regardless of the
contents of the update package, or the mobile device firmware
and/or software components that it is used to update. In this
case, a flag, variable, or parameter such as the ‘UA_Update’
flag mention above may not be employed. In a representative
embodiment of the present invention, a backup of the update
agent code may occur after an initial ‘survey’ activity, and
before the “transformation’ activity used to conduct the actual
update process. The ‘survey’ activity may be employed, for
example, to determine whether the previous update package
was interrupted. The ‘survey’ activity may involve computing
CRC values (or, for example, other signatures or checksums)
of' specific blocks of the NV memory 123, and comparing the
CRCs to pre-computed CRCs (or signatures or checksums)
provided in the update package. Such pre-computed CRCs
may be provided by, for example, a generator such as the
generator 139 of FIG. 1.

In arepresentative embodiment of the present invention, an
update agent in a mobile device such as, for example, the
mobile device 109 may be capable of updating its own update
agent 129 by employing update packages provided by the
distribution network 107. The mobile device 109 may be
capable of updating the update agent 129 first, and then updat-

US 7,971,199 B1

5

ing other firmware and/or software such as the firmware 131
or software 133, 135, for example, employing the newer/
updated update agent 129.

By employing a representative embodiment of the present
invention, the complexity of a generator employed in the
generation of the update packages used to performed handle
the Update Agent update is reduced, and the generator is able
to handle the cacheable write units more efficiently.

FIG. 2 is a block diagram of an exemplary memory
arrangement 205 used by a tri-phase boot technique in a
mobile device such as the mobile device 109 of FIG. 1, for
example, that is capable of updating its own update agent that
may correspond to, for example, the update agent 129 of FI1G.
1, and wherein the backing up of the update agent in the
mobile device is implicit to the update agent itself, in accor-
dance with a representative embodiment of the present inven-
tion. In a representative embodiment of the present invention,
the backup of the update agent may be done through the use
of a first write unit shift when the update agent starts, as
instructed by a generator of the update package via appropri-
ate instructions in the update package. A reserved write unit
shown in FIG. 2 by reserved write unit 211 may be used to
hold the backup update agent copied from update agent write
unit 209 by the use of the first write unit shift. The boot code
207 inthe mobile device (e.g., mobile device 109) may decide
which update agent, the original or a copy of the original, is to
be invoked if an update is to be conducted. In a representative
embodiment of the present invention, the update agent may be
one write unit in length, in that the generator 139 may not
employ preprocessing steps before instructing the update
agent to perform the first write unit shift. Two copies of
update agent initialization code may be placed into that single
write unit, in a representative embodiment of the present
invention employing memory relocation in the update agent.
This may be done because the update agent initialization code
may be executed in two different locations, in the original
update agent write unit 209, and in the copy in the reserved
write unit 211.

In some representative embodiments of the present inven-
tion, an update agent such as, for example, the update agent
129 may be of a size that fits into a single physical block of
non-volatile memory. This may permit simplified operation.
In other representative embodiments of the present invention
such as, for example, when NAND flash memory is
employed, amore involved embodiment may be employed, in
that the physical block size for NAND flash non-volatile
memory is typically only 16K bytes in length. A representa-
tive embodiment of the present invention may support those
electronic devices in which a physical block of non-volatile
memory (e.g., NAND flash memory) is not large enough to
contain anupdate agent such as, for example, the update agent
129 of FIG. 1. A representative embodiment of the present
invention may support the handling of bad blocks and running
bad blocks in non-volatile memory, using the skip-move
method described herein, and for those memory devices in
which a logical write unit comprises more than one physical
write unit of memory.

In a representative embodiment of the present invention, a
generator such as, for example, the generator 139 of FIG. 1
may incorporate instructions in an update package to back up
an update agent such as the update agent 209, for example,
during a tri-phase boot process. An example of a tri-phase
boot process may be found in U.S. patent application Ser. No.
10/932,175, entitled “Tri-Phase Boot Process In A Mobile
Handset”, filed Sep. 1, 2004, the complete subject matter of
which is hereby incorporated herein by reference, in its
entirety. In a representative embodiment of the present inven-

20

25

30

35

40

45

50

55

60

65

6

tion, the generator 139 may know the location of an update
agent write unit (e.g., update agent write unit 209) and the
location of a reserved write unit (e.g., reserved write unit
211). The generator 139, for example, may instruct the update
agent 209 to shift the update agent write unit 209 (e.g., in
which the update agent 129 is located) to the reserved write
unit 211 first implicitly. The term “implicitly” is used herein
to refer to a shift or move that is performed by an update agent
as part of the processing of the contents of an update package
(i.e., update information), and not as a separate operation or
action that is independent of the contents of the update pack-
age. The generator 139 may know (e.g., via a passed param-
eter or value) that a predictor component (not shown) of the
generator 139 may not perform instruction prediction on the
update agent write unit 209.

A representative embodiment of the present invention may
employ a tri-phase boot technique of re-booting a mobile
device that is capable of updating its own update agent. with
the option to initiate an update wherein an update agent is
capable of self-backup action. In such an embodiment, an
update agent such as, for example, the update agent 129 of
FIG. 1 may perform the backup of its own code, instead of a
generator of an update package such as the generator 139
incorporating instructions into the update package to back up
the code of the update agent 129. The generator 139 does not
incorporate instructions in the update package for the backup
of'the update agent, in order to support the situation where the
update agent 129 itself is to be updated. The generator 139
does not instruct the update agent 129 to create a backup
initially via an update package. As in the previous example,
above, a boot loader (e.g., boot loader 127 of FIG. 1, that may
correspond to, for example, boot code 207 in FIG. 2) may
determine which copy of the update agent is to be loaded for
execution. A boot loader such as, for example, the boot loader
127 may perform a load (e.g. a copy or memory relocation) of
the entire update agent 129, for example, into a region of
RAM in which the update agent 129 will be executed.

Inrepresentative embodiments of the present invention, the
approach use for performing this self-backup of the update
agent 129 may be the basically the same, whether the memory
used is NOR or NAND-type flash memory. A difference may
be in how the update agent 129 is verified and loaded. For the
case of NOR flash memory, the update agent 129 may be
verified and loaded directly from the addressable memory
space in which the update agent is stored (e.g., update agent
write unit 209). For the case of NAND flash memory, the
update agent 129 may be loaded using a skip-move method,
before verification is performed. In a representative embodi-
ment of the present invention, because bad blocks can occur
in NAND memory, the skip-move method may skip whole
blocks of NAND flash memory marked as “bad” in order to
retrieve the code/application from good block of NAND flash
memory, and to load them into RAM for execution, update or
manipulation, for example.

FIG. 3 is a block diagram of an exemplary memory
arrangement 305 used by a tri-phase boot technique in a
mobile device such as the mobile device 109 of FIG. 1, for
example, that employs NOR flash NV memory 306 wherein
an update agent 309 resident in the NOR flash NV memory
306 is capable of performing a self-backup, in accordance
with a representative embodiment of the present invention.
The illustration of FIG. 3 shows a NOR flash NV memory 306
that may correspond to, for example, the NV memory 123 of
FIG. 1. Although the NOR flash NV memory 306 in this
example is described herein is a type of flash NV memory,
other forms of NV memory may be employed without depart-
ing from the spirit and scope of the present invention. The

US 7,971,199 B1

7

NOR flash NV memory 306 comprises a boot code 307, an
update agent 309, application code 313, and a memory pool
311 for update agent backup. The memory arrangement 305
also comprises a RAM memory 315 that may be employed for
the execution of update agent code, for example. In a repre-
sentative embodiment of the present invention, the update
agent 309 may be verified and loaded from the addressable
memory space of NOR flash NV memory 306 directly into the
RAM memory 315 for execution, by the boot code 307. The
boot code 307 may determine which copy of an update agent
(e.g., a source copy in the memory space represented by the
update agent 309, or a backup copy of an update agent in
memory pool 311) is loaded to the RAM memory 315 for
execution. The boot code 307 may then branch to the RAM
memory 315 directly to execute the loaded update agent. If
the update agent 309 (i.e., the source copy) is loaded into the
RAM memory 315 by the boot code 307, a backup of the
update agent 309 may be performed by the update agent (e.g.,
the copy of update agent 309) in the RAM memory 315, into
the memory pool 311.

FIG. 4 is a block diagram of an exemplary memory
arrangement 405 used by a tri-phase boot technique in a
mobile device such as the mobile device 109 of FIG. 1, for
example, that employs NAND flash NV memory 406 wherein
an update agent 409 resident in the NAND flash NV memory
406 is capable of performing a self-backup, in accordance
with a representative embodiment of the present invention.
The illustration of FIG. 4 shows NAND flash NV memory
406 comprising a boot code 407, an update agent 409, appli-
cation code 413, and a memory pool 411. In addition, the
memory arrangement 405 comprises a RAM 415 for execu-
tion of an update agent, and a RAM 420 that may be used for
skip-move loading the update agent 409 and application code
413 from the NAND flash NV memory 406, to an update
agent portion 419 and an application code portion 417,
respectively, of the RAM 420. In a representative embodi-
ment of the present invention, a boot code such as, for
example, the boot code 407 may load the contents of the
update agent 409 and application code 413 portions of the
NAND flash NV memory 406 data to the update agent portion
419 and application code portion 417 of the RAM 420, to
enable the execution of the update agent 409 and application
code 413. After skip-move loading the contents of the NAND
flash NV memory 406 to RAM 420, the boot code 407 may
determine which version of the update agent code is to be
loaded into RAM 415 for execution, an original version of the
update agent 409 (which has been loaded into RAM into a
section 419), or a backup copy of the update agent 411. If the
original version (i.e., the original copy) of the update agent
409 (skip-moved to update agent portion 419 of RAM 420) is
loaded into RAM 415, then the original copy is executed in
RAM 415. This may create a backup (e.g., using skip-move
operations) of the update agent code 409 in the memory pool
411 for update agent backup. The memory pool 411 com-
prises a segment of NAND flash NV memory 406 that has
been reserved for backup purposes, or is currently available
for use.

An advantage of a representative embodiment of the
present invention is that the complexity of a generator capable
of performing an update of an update agent such as, for
example, the update agent 129 of FIG. 1, is reduced. Under
the representative embodiment of the present invention illus-
trated above, a generator such as, for example, the generator
139 of FIG. 1 may incorporate instructions into an update
package, in order to back up the update agent 129 during a
tri-phase boot process. In such an approach, the generator 139
may use the location of an update agent write unit (e.g., 209 of

20

25

30

35

40

45

50

55

60

65

8

FIG. 2) and the location of a reserved write unit (e.g., 211 of
FIG. 2) during the generation of an update package. The
update agent write unit may be defined as the location where
an update agent is currently stored/resident. The generator
139 may instruct an update agent such as the update agent
129, for example, to shift an update agent write unit (e.g., 209)
that contains the update agent 129, to the location of a
reserved write unit (e.g., 211). This may be done as an initial
action of the update agent 129, and may be referred to as an
“implicit” approach. In a related representative embodiment,
the generator 139 may cause the update agent 129 to initially
shift the update agent write unit 209 to the reserved write unit
211, for example, and finally as a last step in the update
process, shift back to the previous update agent write unit. It
should be noted that in a representative embodiment of the
present invention, write units may not be uniform in size.
Therefore, a representative embodiment of the present inven-
tion may handle such additional complexity due to the use of
various write unit sizes, when such update agent write units
are shifted.

In a representative embodiment of the present invention, a
generator such as, for example, the generator 139 may
employ a predictor element (not shown). Such a predictor
may employ information indicating that the predictor com-
ponent of the generator 139 may not perform instruction
prediction on an update agent write unit like update agent
write unit 209, for example. In a representative embodiment
of the resent invention that employs a self-backup mecha-
nism, all the contents, including an update agent such as the
update agent 12, for example, may be treated in the same way
by the generator 139, for example, and a simpler generation
process may be conducted. A benefit of employing such a
representative embodiment of the present invention is that a
generator like generator 139, for example, may handle a
cacheable write unit in the memory space of the device more
efficiently.

FIG. 5 is a block diagram that depicts an exemplary
memory layout 505 of a electronic device that may corre-
spond to, for example, the mobile device 109 of FIG. 1 in
which a generator processes an update agent portion 509 and
application portion 513 of NV memory 506 as one updateable
entity 517, in accordance with a representative embodiment
of'the present invention. The updateable entity 517 may omit
aboot code portion 507 and free space within the NV memory
506. A generator such as the generator 139 of FIG. 1, for
example, may treat the entire information contained in the
updateable entity 517 equally. That is, in a representative
embodiment of the present invention, no specific block of the
NV memory 506 may be treated differently or in any special
way during processing by a generator like the generator 139,
for example.

In a representative embodiment of the present invention, a
predictor component (not shown) of a generator such as the
generator 139 may perform prediction on the update agent
write unit 509 portion of the NV memory 506 during process-
ing. The generator 139 may manage cacheable write units
more efficiently because the update agent write unit 509 does
not need to be shifted to a reserved write unit portion such as,
for example, the reserved write unit 211 of FIG. 2. In a
representative embodiment of the present invention, perform-
ing an update of an update agent such as the update agent 129,
for example, in a NAND memory based platform using the
skip-move method described above is simpler than prior
methods.

In a representative embodiment of the present invention, a
boot loader such as, for example, the boot code 507 may use
a backup copy of an update agent such as, for example, that

US 7,971,199 B1

9

stored in a reserved write unit such as the memory pool 511 of
FIG. 5, for example. An important aspect of implementing the
self-backup update agent of a representative embodiment of
the present invention is that a boot loader such as the boot
code 507 may select to use a backup copy of an update agent
(e.g., in a reserve write unit such as memory pool 511) first, if
the integrity of the backup copy can be verified. A reason for
doing so is that the backup copy may have the longest life-
cycle during an update, and may not be the source copy. If a
backup copy of an update agent exists in NV memory of an
electronic device such as, for example, the mobile device 109
of FIG. 1, a representative embodiment of the present inven-
tion may always chose to use the backup copy.

In a representative embodiment of the present invention, a
boot loader such as the boot code 507 may know which copy
of an update agent is used for a given instance of a tri-phase
boot, for example, the source (e.g., the update agent 509) or
the backup (e.g., the update agent in memory pool 511) copy.
If a source copy is used, the boot loader (e.g., boot code 507)
may inform the update agent (e.g., update agent 509) that a
self-backup is involved. This passing of information may be
implemented, for example, by a parameter or value that is
passed through a microprocessor register, for example, from
the boot loader (e.g., boot code 507) to the update agent (e.g.,
update agent 509).

In a representative embodiment of the present invention, a
self-backup may be performed after a location for resumption
of'a (possibly interrupted) update process is determined. The
determination of a resumption location may employ, for
example, firmware and/or software referred to by the name
“va_surveyor_getResumelndex()”. The self-backup may
then be performed and, if successtul, an update of the remain-
ing code in the memory of an electronic device may be per-
formed using, for example, firmware and/or software that
may be referred to by the name “va_engine_transform()”.

In a representative embodiment of the present invention, a
backup copy of the update agent (e.g., stored in memory pool
511) may be destroyed, to guarantee that the updated version
of'the update agent will be loaded correctly for a next update.
The clearing or destruction of the backup copy of an update
agent may occur if at least one of the following conditions is
true:

a) the update of the electronic device performed by, for
example, the “ua_engine_transform()” firmware and/or
software returns successfully,

b) the self-backup cannot be performed successfully, or

¢) the self-backup update agent (e.g., the update agent in
memory pool 511 which is a copy of the update agent
509) cannot be verified after the self-backup is per-
formed.

In a representative embodiment of the present invention,
the destruction of the backup copy (e.g., an update agent
stored in memory pool 511) may be performed at one of the
following points in the update process:

a) If a failure during the freeing of temporary write units
(e.g., using a routine that may be named “ua_engi-
ne_eraseTemporaryWriteUnits()”) will not cause an
update retry, the self-backup may be performed before
the freeing of temporary write units (e.g., using
“va_engine_eraseTemporaryWriteUnits()”) is per-
formed.

b) If a failure during the freeing of temporary write units
(e.g., using a routine that may be named “ua_engi-
ne_eraseTemporaryWriteUnits()”) will cause an update
retry, the self-backup destroy may be performed after the

20

25

30

35

40

45

50

55

60

65

10
freeing of temporary write units (e.g., using “ua_engi-
ne_erase TemporaryWriteUnits()”) completes success-
fully.

FIG. 61is aflowchart of an exemplary tri-phase boot process
605 in a NOR memory based electronic device that may
correspond to, for example, the mobile device 109 of FIG. 1
in which an update agent such as the update agent 309 of FIG.
3 conducts a self-backup, in accordance with a representative
embodiment of the present invention. The method illustrated
in FIG. 6 begins at a block 607, following boot-up (e.g., a
re-boot or an application of power to the electronic device)
when boot code is executed. The boot code may correspond to
the boot code 307 of FIG. 3, for example. Then, at a next
decision block 609, an attempt is made, for example, to iden-
tify a particular “magic number” and checksum in a backup
copy of an update agent in the memory of the electronic
device such as, for example, a backup copy of an update agent
that may exist in memory pool 311 of FIG. 3. In a represen-
tative embodiment of the present invention, a “magic num-
ber” may comprise a predetermined sequence of data stored
in memory, that may be used to identify an associated region
or portion of memory as containing a particular form of data
or being a part of a particular piece of firmware and/or soft-
ware. If the magic number and checksum of the backup copy
of the update agent cannot be determined/identified/verified
then, at a next decision block 617, an attempt may be made to
identify the magic number and checksum of a source copy of
an update agent such as, for example, the update agent 309 of
FIG. 3. If the magic number and checksum is not found at the
location of the source copy (e.g., at update agent 309) then, at
a next block 625, a fatal error may be flagged and processing
of the method of FIG. 6 stops.

If, however, the magic number and checksum of the source
copy of the update agent (e.g., update agent 309) is deter-
mined/identified/verified at the block 617 then, at anext block
619, the update agent from the source location (e.g., the
update agent 309) may be loaded/copied to an update agent
execution region such as, for example, the RAM 315. Then, at
a next block 621, a flag may be set to indicate that a self-
backup is to be used. For example, a “selfBackup” flag stored
in the memory of the electronic device may be set to ‘true’.
Then, at a next block 615, control may be passed to (e.g.,
using a branch command) to the copy of the update agent in
the execution region (e.g., RAM 315), along with the self-
Backup flag (or, for example, using an alternate mechanism to
indicate the same information) that indicates that the self-
Backup is to be used. Subsequently, at a next block 623, the
update activity is conducted. Then the process of FIG. 6 then
terminates.

If, at the block 609, the magic number and checksum of the
backup copy of the update agent is determined/identified/
verified then, at a next block 611, the update agent from the
backup location (e.g., the update agent backup copy in
memory pool 311) may be loaded to the update agent execu-
tion region (e.g., RAM 315). Then, at a next block 613, a flag
may be set to indicate that self-backup is not to be used. For
example, a “selfBackup” flag in the memory of the electronic
device may be set to ‘false’. Then, at the next block 615,
control may be passed to (e.g., using a branch command) to
the update agent in the execution region (e.g., RAM 315),
along with the selfBackup flag (or, for example, an alternate
mechanism to indicate the same information) that indicates
that the selfBackup is not to be employed.

FIG. 71is aflowchart of an exemplary tri-phase boot process
705 in an electronic device employing NAND-based non-
volatile memory such as the mobile device 109 of FIG. 1, in
which an update agent such as, for example, the update agent

US 7,971,199 B1

11

409 of FIG. 4 conducts a self-backup, in accordance with a
representative embodiment of the present invention. The
method illustrated in FIG. 7 begins at a block 707, following
boot-up (e.g., a re-boot or an application of power to the
electronic device) when boot code is executed. The boot code
may correspond to the boot code 407 of FIG. 4, for example.
At a start block 707, the boot-up sequence starts. Then, at a
nextblock 709, the contents of NAND flash NV memory such
as, forexample, the NAND flash NV memory 406 comprising
the update agent 409 and the application code 413 may be
loaded into RAM such as the update agent portion 419 and
application code portion 417 of the RAM 420, respectively,
using the skip-move approach describe previously with
respect to FIG. 4. This may be performed because the opera-
tion of NAND memory does not typically support the in-place
execution of code. Then, at a next block 711, the backup copy
of the update agent from, for example, the memory pool 411
of NAND flash NV memory 406 may be loaded into an update
agent execution region such as the update agent execution
region RAM 415 of FIG. 4. Then, at a next block 713, an
attempt is made to determine/identify/verify a “magic num-
ber” and checksum in the backup copy (e.g., in memory pool
411 of FIG. 4) as described above, for example. If, at the
decision block 713, the magic number and checksum in the
backup copy (e.g., memory pool 411) are determined/identi-
fied/verified then, at a next block 715, a flag may be set to
indicate that the self-backup is not to be used. For example, a
flag called “selfBackup” in the memory of the electronic
device may be set to ‘false’. Then, at a next block 723, control
may be passed (e.g., using a branch instruction) to the update
agent in the update agent execution region (e.g., RAM 415),
along with an indicator or flag signaling whether a self-
backup is to be used. Finally, at a next block 727, the update
agent in the execution region (e.g., RAM 415) may perform
anupdate, ifdesired, or control may be passed to a application
firmware and/or software in the electronic device.

If, at the decision block 713, the magic number and check-
sum in the backup copy (e.g., memory pool 411) are not
determined/identified/verified then, at a next block 717, an
update agent such as, for example, the update agent 419 may
be copied from the data loaded from NAND flash NV
memory 406 into RAM, to create a duplicate update agent in
the update agent execution region 415, for example. This
would ensure that the source copy of the update agent (e.g.,
update agent 409) will be executed. Then, at a next decision
block 719, an attempt may be made to determine/identify/
verify the magic number and checksum of the duplicated
update agent (e.g., the source copy, update agent 409, for
example) in the execution region (e.g., RAM 415). If the
magic number and the checksum are not identified then, at a
next terminal block 725, a fatal error may be flagged, and the
process of FIG. 7 may terminate.

If, on the other hand, at the decision block 719, the magic
number and the checksum are determined/identified/verified
then, at a next block 721, a flag may be set to indicate that a
self-backup is to be conducted. For example, a flag called
“selfBackup” resident in the memory of the electronic device
may be setto ‘true’. Then, at a next block 723, control may be
passed (e.g., using a branch instruction) to the update agent in
the update agent execution region (e.g., RAM 415), along
with an indicator or flag signaling whether a self-backup is to
be used. Finally, at a next block 727, the update agent in the
execution region (e.g., RAM 415) may perform an update, if
desired, or control may be passed to a application firmware
and/or software in the electronic device.

FIG. 8 is a flowchart illustrating an exemplary update pro-
cess 805, in accordance with a representative embodiment of

20

25

30

35

40

45

50

55

60

65

12

the present invention. The example of FIG. 8 represents some
of'the operations performed by referring to the name of exem-
plary functions or routines that may perform those operations.
For example, a routine that may be named “ua_engine_erase-
TemporaryWriteUnits()” may be employed to free write
units in memory, and a routine that may be named “va_sur-
veyor_getResumelndex()” may be employed to determine
the point at which an interrupted update process is to be
resumed. A routine that may be named “va_engine_trans-
form()” may perform an update of firmware and/or software
in the memory of an electronic device, using the contents of
an update package (a.k.a., update information). In some rep-
resentative embodiments of the present invention, a value
returned by a function such as, for example, “ua_engi-
ne_eraseTemporaryWriteUnits()” may not be processed.

The method illustrated by FIG. 8 begins, at block 807, at
some point after power-up or re-boot of an electronic device
such as, for example, the mobile device 109 of FIG. 1. The
method of FIG. 8 may, at block 808, perform housekeeping
functions such as, for example, initialization of variable
related to the later actions of the method of FIG. 8. Next, at
decision block 809, a function named “va_surveyor_getRe-
sumelndex()” may be invoked to determine the index in a
series of banks of memory at which a previous update attempt
was prematurely terminated. Such an interruption may be due
to, for example, power failure (e.g., battery exhaustion or
removal) or user action (e.g., activation of the “OFF” button).
If determination of the bank index is successful then, at a next
block 811, an attempt is made to determine whether a self-
backup of the update agent in the electronic device is to be
conducted. If it is determined that the self-backup is not
necessary then, at a next block 819, the update process may be
performed by, for example, a function or routine named
“va_engine_transform()”. Such a routine may execute the
transforms/conversion that constitute the update process,
where each transform may involve one or more banks of
memory, in some bank order. If the update process is success-
ful then, at a next block 821, the backup copy of the update
agent may be destroyed. Next, at block 823, the temporary
write units employed during the update process may be freed
using, for example, a routine named “va_engine_ecraseTem-
porary WriteUnits()”. In a representative embodiment of the
present invention, this may be done to clean up transient data.
Additional housekeeping may be performed, at block 822, to
restore registers, save variable or status information, free
other storage, and other details of the end of the update
process that are not of importance in this illustration. Finally,
atblock 825, the update process is completed, and the method
illustrated in FIG. 8 ends.

If, at the decision block 809, the determination of bank
index (e.g., using a routine “ua_surveyor_getResumeln-
dex()”) is not completed (i.e., passed) successfully, the
update agent process of FIG. 8 may terminate, at block 831.
This may comprise an appropriate message being displayed
to the user to indicate that the update process is being termi-
nated, and may solicit user acknowledgement or selection of
further action. In one representative embodiment of the
present invention, the update agent may transfer control to a
boot loader to resume the normal operation. This may be done
only after resetting flags that make the boot code bypass the
update process and resume normal operation.

If it is determined, at the decision block 811, that the
self-backup is to be performed then, at a next block 815, a
source copy of an update agent may be duplicated into a
backup region. Then, at a next block 817, an attempt is made
to verify the backup copy just created employing, for
example, a byte-by-byte comparison technique. Other tech-

US 7,971,199 B1

13

niques of verifying the backup copy are also anticipated and
may be employed without departing from the spirit and scope
of'the present invention. If; at the block 817, the backup copy
is successfully verified (i.e. found valid and proper) then, at
decision block 819, a function such as, for example,
“va_engine_transform()” described above may be invoked to
execute the transforms/conversions that may be employed in
an update process in accordance with a representative
embodiment of the present invention. If the “va_engin-
e_transform()” function/routine completes successtully (i.e.,
passes) then, at block 821, the backup copy of the update
agent is destroyed, and the method continues as described
above.

If, at decision block 819, the conversion/transformation
operations of the routine/function “va_engine_transform()”
does not complete successfully (i.e., does not pass) then, at
decision block 833, a determination is made whether termi-
nation of the update process is appropriate. If it is determined
that the process is to be terminated then, at block 835, the
update process is terminated and cleanup is attempted. An
appropriate message may be displayed to the user to indicate
that the update process terminated. If, at the decision block
833, it is determined to that the update process is to continue
(e.g., to retry one or more update related transforms) then the
update operations of the “uva_engine_transform()” routine/
function may be invoked again, at block 819. In a represen-
tative embodiment of the present invention, the update pro-
cess may be retried a number of times before the method of
FIG. 8 terminates, at block 835.

FIG. 9 is a flowchart illustrating another exemplary update
process 905, in accordance with a representative embodiment
of the present invention. As was done in FIG. 8, the example
of FIG. 9 represents some of the operations performed by
referring to the name of exemplary functions or routines that
may perform those operations. For example, a routine that
may be named “va_engine_eraseTemporary WriteUnits()”
may be employed to free write units in memory, and a routine
that may be named “va_surveyor_getResumelndex()” may
be employed to determine the point at which an interrupted
update process is to be resumed. A routine that may be named
“va_engine_transform()” may perform an update of firm-
ware and/or software in the memory of an electronic device,
using the contents of an update package (a.k.a., update infor-
mation). In a representative embodiment of the present inven-
tion, a value returned by a routine or function such as, for
example, “va_engine_eraseTemporary WriteUnits()” may be
processed.

The method illustrated by FIG. 9 begins, at block 907, at
some point after power-up or re-boot of an electronic device
such as, for example, the mobile device 109 of FIG. 1. The
method of FIG. 9 may then, at block 908, perform housekeep-
ing functions such as, for example, initialization of variable
related to the later actions of the method of FIG. 9. Next, at
decision block 909, a function or routine that determines the
index of a bank of memory where a previous attempt to update
was prematurely terminated due to an interruption such as, for
example, power failure or battery removal, or user action.
Such a function/routine may, for example, be named “va_sur-
veyor_getResumelndex()”. If the function/routine completes
successfully then, at block 911, an attempt may be made to
determine whether a self-backup of the update agent is to be
conducted. If it is determined that a self-backup is not to be
conducted then, at block 917, a function may be invoked to
execute the one or more conversions/transforms that are
employed in the update process, where each transform may
involve one or more banks of memory in some bank order.
The function/routine employed by a representative embodi-

20

25

30

35

40

45

50

55

60

65

14

ment of the present invention may be referred to by the name
“va_engine_transform()”, for example.

If, at block 909, the function that determines the memory
bank index where an interruption occurred during a previous
update attempt (e.g., “va_surveyor_getResumelndex()” is
not successful then, at block 931, the update process of FIG.
9 may terminate with a message to a user. In a representative
embodiment of the present invention, the user may be
prompted to request commencement of normal device opera-
tion after the message is displayed.

Following the successtul completion of the conversion/
transformation, at block 917, the temporary write units used
may be freed, at block 919. This may employ a function/
routine named “‘va_engine_eraseTemporary WriteUnits()”,
for example. In a representative embodiment of the present
invention, this may be done to clean up transient data. Next, at
block 921, the backup copy of the update agent may be
destroyed. Additional housekeeping may be performed, at
block 922, to restore registers, save variable or status infor-
mation, free other storage, and perform other details of the
end of the update process that are not pertinent to this illus-
tration. The update process illustrated in FIG. 9 is then com-
plete, at block 923.

If, at decision block 911, it is determined that a self-backup
is to be used then, at block 913, a source copy of an update
agent may be duplicated into a backup region. Then, at block
915, an attempt may be made to verify the created backup
copy employing, for example, a byte-by-byte comparison
technique. Other techniques of verification are also antici-
pated. If; at block 915, the backup copy is successfully veri-
fied (i.e., found valid and proper) then, at decision block 917,
a function/routine may be invoked to execute one or more
transforms/conversion that may be employed in the update
process. The conversion/transforms may be performed, for
example, by a function/routine name ‘“va_engine_trans-
form()”. If the conversion/transformation is not successful, at
block 917, then a determination may be made, at decision
block 933, as to whether termination of the update process is
appropriate. This may include, for example, a number of
retries and user prompting for acknowledgement to perform
continued update attempts. If termination is not appropriate,
the conversion/transformation may be reattempted, at block
917. If termination is determined to be appropriate (e.g., via
user response to end the update process) the update process
may be terminated, at block 935.

If the invoked conversion/transformation routine/function
is successful, at block 917, control may be passed to a routine/
function, at block 919, that may be named “ua_engine_erase-
Temporary WriteUnits()”, for example, and that may attempt
to clean up one or more temporary write units that were used
during the update. A failure to erase these temporary write
units may indicate a hardware failure, which may represent a
fatal error, or a failure of a device driver for a flash memory
unit. If the freeing of temporary write units is unsuccessful,
the failure may be treated as fatal, in which case a message
may be displayed, as appropriate, and the update process may
terminate, at block 935. If the freeing of temporary write units
succeeds, this indicates that cleanup of temporary write units
was complete and, at block 921, the backup copy of the
update agent may be destroyed. Additional housekeeping
may then be performed, at block 922, to restore registers, save
variable or status information, free other storage, and perform
other details of the end of the update process that are not
pertinent to this illustration. The method of FIG. 9 then ends,
at block 923.

If, at block 915, the backup copy is not successfully veri-
fied then, at block 921, the backup copy of the update agent is

US 7,971,199 B1

15

destroyed. Additional housekeeping may then be performed,
at block 922, to restore registers, save variable or status infor-
mation, free other storage, and perform other details of the
end of the update process that are not pertinent to this illus-
tration. The update process illustrated in FIG. 9 is then com-
plete, at block 923.

FIG. 10 depicts a memory image of an exemplary update
agent write unit 1005 in which the last 64 bytes of the update
agent write unit 1005 are used for the determination/identifi-
cation/verification purposes described above, in accordance
with a representative embodiment of the present invention. In
the representative embodiment shown in the illustration of
FIG. 10, the last 64 bytes of the update agent write unit 1005
comprises a “magic number” 1009 that may, for example,
four bytes in length. The update agent write unit 1005 of FIG.
10 also comprises a checksum 1011 that may, for example, be
four bytes in length. In addition, the update agent write unit
1005 comprises a version string 1013 that may be 58 bytes in
length, for example. The magic number 1009 may comprise a
string of ASCII characters such as, for example, “BitC”, and
may have the hexadecimal value 0x43746942 in the little
endian byte order, or 0x42697443 in the big endian byte
order. Other values for the magic number are contemplated
and may employed without departing from the spirit and
scope of the present invention.

In a representative embodiment of the present invention, a
variety of algorithnis may be employed for computing the
checksum 1011. The algorithnis employed may be based on
algorithms used by other firmware and/or software within an
electronic device like the boot loader 127 in the mobile device
109, for example. It reduces the footprint of the boot loader
implementation. In some representative embodiments of the
present invention, the last 64 bytes of the update agent write
unit 1005 may be excluded from computation of the check-
sum 1011, to avoid a cyclic problem.

In a representative embodiment of the present invention,
the version string 1013 may, for example, comprise a version
label from a particular file of source code such as, for
example, a file named “uaversion.c” that may be used during
development of the firmware and/or software.

In a representative embodiment of the present invention,
the new update agent (i.e., that update agent updated from an
older one) may understand update status data (USD) used by
an older version of update agent. This may be of particular
importance to make this above-described self-backup mecha-
nism work efficiently and reliably, if the USD logic changes
between the two update agent versions. Understanding of
USD from an older version of update agent by a newer update
agent provides backward compatibility during a transition
from old USD to new USD. In some representative embodi-
ments of the present invention, a new update agent may know
how to reset the older version of USD logic. For example, an
interruption (e.g., a power failure) may occur after destroy-
ing/clearing the backup update agent, but before USD is reset
(e.g., from an old format to a new format). The boot loader
may subsequently load the new version of the update agent
following the next boot up, because the old version of the
update agent has been destroyed/cleared, and the new update
agent may have need to process the old USD (e.g., format and
logic). A representative embodiment of the present invention
properly handles the transition by incorporating logic in the
new update agent to process both an older and the new USD
formats and associated data.

Aspects of the present invention may be seen in amethod of
updating at least one of: firmware and software in an elec-
tronic device having update agent code. Such a method may
comprise creating a backup copy of the update agent code,

20

25

30

35

40

45

50

55

60

65

16

authenticating update information, and executing the update
agent code to update the at least one of: firmware and software
in the electronic device using the update information. In a
representative embodiment of the present invention, creating
abackup copy of the update agent code may comprise detect-
ing whether a backup copy of the update agent code exists,
and copying a source copy of the update agent code into a
backup location to create the backup copy of the update agent
code, if the backup copy of the update agent code does not
exist.

Executing the update agent code may comprise running the
backup copy of the update agent code, if the backup copy of
the update agent code exists and is valid. Executing the update
agent code may also comprise running the source copy of the
update agent code, if the backup copy does not exist or is not
valid. In addition, executing the update agent code may com-
prise deleting the backup copy of the update agent code at the
end of the updating. Running the backup copy of the update
agent code may comprise transferring the backup copy of the
update agent code into an update agent section of random
access memory (RAM), and invoking the update agent code
in the update agent section in random access memory (RAM).
Running the source copy of the update agent code may com-
prise transferring the source copy of the update agent code
into an update agent section of random access memory
(RAM), and invoking the update agent code in the update
agent section in random access memory (RAM). In a repre-
sentative embodiment in accordance with the present inven-
tion, update information may comprise an update package,
and update information may comprise a set of executable
instructions for converting a first version of code to a second
version of code.

Other aspects of the present invention may be found in an
electronic device comprising a non-volatile memory contain-
ing a firmware, update agent code resident in the non-volatile
memory, and wherein the update agent code, when executed,
creates a backup copy of the update agent code during an
update of the firmware. Such an embodiment may also com-
prise update information used by the update agent code to
update the firmware, and the update agent code may implic-
itly create the backup copy of the update agent code using the
update information, during the update of the firmware. The
update information used by the update agent code to update
the firmware may comprise executable instructions to implic-
itly create a backup copy of the update agent in a backup
section of the non-volatile memory. Creation of the backup
copy of the update agent code during the update of firmware
may occur proximate the beginning of the update.

In a representative embodiment of the present invention,
the electronic device may comprise update information used
by the update agent code to update the firmware, and the
update agent code may explicitly create the backup copy of
the update agent when the update of firmware is invoked,
before conducting the update of the firmware using the update
package. Such an embodiment may also comprise boot code
that is executed immediately after a reboot of the electronic
device, and random access memory (RAM) into which the
update agent is loaded for execution. The boot code may
determine which one of: the update agent code resident in the
non-volatile memory and the backup copy of the update agent
code is to be loaded into the random access memory (RAM).
The boot code may load the determined one of: the update
agent code resident in the non-volatile memory and the
backup copy of the update agent code into the random access
memory (RAM), and may cause execution of the loaded
update agent code.

US 7,971,199 B1

17

In a representative embodiment of the present invention,
the boot code may determine which one of: the update agent
code resident in the non-volatile memory and the backup
copy of the update agent code to be loaded into the random
access memory (RAM) based on at least one of: a predefined
data sequence and a checksum associated with each update
agent code. The boot code may communicate a parameter to
an update agent code loaded to the random access memory
(RAM), and the parameter may indicate that backup of the
update agent code prior to updating of firmware by the update
agent is to be performed. The executed update agent code may
cause removal of the backup copy of the update agent code
proximate the end of updating of firmware. In addition, the
executed update agent code may terminate updating of firm-
ware without removing the backup copy of the update agent
code, if at least one of: the update information is corrupt and
the updating of firmware is not successful.

In a representative embodiment of the present invention,
the non-volatile memory may comprise NAND-based non-
volatile memory, and the boot code may load firmware,
including update agent code, from non-volatile memory into
random access memory (RAM) for execution. The boot code
may determine which one of: update agent code in random
access memory (RAM) and a backup copy of update agent
code in non-volatile memory is to be used, and may load the
determined one into an update agent execution section in
random access memory (RAM). The boot code may cause
execution of code loaded into the update agent execution
section in random access memory (RAM). In another repre-
sentative embodiment of the present invention, the non-vola-
tile memory may comprise NOR-based non-volatile memory.
The boot code may determine which one of: update agent
code in non-volatile memory and a backup copy of update
agent code in non-volatile memory is to be used, may load the
determined one into RAM for execution, and may cause
execution of update agent code loaded in the random access
memory (RAM).

Yet other aspects of the present invention may be observed
in an updatable electronic device comprising non-volatile
memory containing resident update agent code and a firm-
ware. The resident update agent code may be executable by a
processor to cause updating of the firmware in the non-vola-
tile memory, and to cause updating of the resident update
agent code. Execution of the resident update agent code may
create a backup copy of the resident update agent code in the
non-volatile memory, before updating the firmware and the
resident update agent code. The resident update agent code in
non-volatile memory may be located in a portion of non-
volatile memory, and the portion may comprise validation
information for identifying the resident update agent code.
The validation information may comprise a predefined
sequence of data, a checksum, and a version string. A repre-
sentative embodiment of the present invention may comprise
first update status data comprising state information of an
update activity. The resident update agent code may update
the resident update agent code to produce new update agent
code that employs second update status data, and the new
update agent code may be capable of employing the first
update status data as well as the second update status data.

Accordingly, the present invention may be realized in hard-
ware, software, or a combination of hardware and software.
The present invention may be realized in a centralized fashion
in at least one computer system, or in a distributed fashion
where different elements are spread across several intercon-
nected computer systems. Any kind of computer system or
other apparatus adapted for carrying out the methods
described herein is suited. A typical combination of hardware

20

25

30

35

40

45

50

55

60

18

and software may be a general-purpose computer system with
a computer program that, when being loaded and executed,
controls the computer system such that it carries out the
methods described herein.

The present invention may also be embedded in a computer
program product, which comprises all the features enabling
the implementation of the methods described herein, and
which when loaded in a computer system is able to carry out
these methods. Computer program in the present context
means any expression, in any language, code or notation, of a
set of instructions intended to cause a system having an infor-
mation processing capability to perform a particular function
either directly or after either or both of the following: a)
conversion to another language, code or notation; b) repro-
duction in a different material form.

While the present invention has been described with refer-
ence to certain embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted without departing from the
scope of the present invention. In addition, many modifica-
tions may be made to adapt a particular situation or material
to the teachings of the present invention without departing
from its scope. Therefore, it is intended that the present inven-
tion not be limited to the particular embodiment disclosed,
but that the present invention will include all embodiments
falling within the scope of the appended claims.

What is claimed is:

1. A method of updating at least one of: firmware and
software in an electronic device having update agent code, the
method comprising:

authenticating to obtain an update package, wherein the

update package includes at least executable instructions
for converting a version of code to an updated version of
the code;

executing the update agent code to create a backup copy of

the update agent code only if the update package indi-
cates that the update package affects the update agent
code itself;

executing the update agent code to update the at least one

of: firmware and software in the electronic device
employing the obtained update package, wherein
executing the update agent code to update the at least one
of:

firmware and software in the electronic device comprises

running the backup copy of the update agent code to
update the at least one of: firmware and software, if the
backup copy of the update agent code exists and is valid;
and

running a source copy of the update agent code to update

the at least one of: firmware and software, if the backup
copy does not exist or is not valid.

2. The method according to claim 1, wherein executing the
update agent code to create a backup copy of the update agent
code comprises:

detecting whether the backup copy of the update agent

code exists; and

copying the source copy of the update agent code into a

backup location to create the backup copy of the update
agent code, if the backup copy of the update agent code
does not exist.

3. The method according to claim 1, wherein executing the
update agent code to update the at least one of: firmware and
software in the electronic device using the update information
comprises:

deleting the backup copy of the update agent code at the

end of the updating.

US 7,971,199 B1

19

4. The method according to claim 1 wherein running the
backup copy of the update agent code comprises:

transferring the backup copy of the update agent code into

an update agent section of random access memory
(RAM); and

invoking the update agent code in the update agent section

in random access memory (RAM).

5. The method according to claim 1 wherein running the
source copy of the update agent code comprises:

transferring the source copy of the update agent code into

an update agent section of random access memory
(RAM); and

invoking the update agent code in the update agent section

in random access memory (RAM).

6. The method according to claim 1 wherein update infor-
mation comprises an update package.

7. The method according to claim 1 wherein update infor-
mation comprises a set of executable instructions for convert-
ing a first version of code to a second version of code.

8. An electronic device comprising:

a non-volatile memory containing a firmware;

update agent code resident in the non-volatile memory;

wherein the update agent code executes, only if an update

package including at least executable instructions for
converting to an updated version indicates that executing
the update package changes the update agent code, to
create a backup copy of the update agent code during an
update of the firmware;

boot code that is executed immediately after a reboot of the

electronic device;

random access memory (RAM) into which the update

agent code is loaded for execution; and

wherein the boot code determines which one of: the update

agent code resident in the non-volatile memory and the
backup copy of the update agent code is to be loaded into
the random access memory (RAM), loads the deter-
mined one of: the update agent code resident in the
non-volatile memory and the backup copy of the update
agent code into the random access memory (RAM), and
causes execution of the loaded update agent code.

9. The electronic device of claim 8, further comprising:

update information used by the update agent code to update

the firmware; and

wherein the update agent code implicitly creates the

backup copy of the update agent code using the update
information, during the update of the firmware.

10. The electronic device of claim 9 wherein the update
information used by the update agent code to update the
firmware comprises executable instructions to implicitly cre-
ate the backup copy of the update agent code in a backup
section of the non-volatile memory.

11. The electronic device of claim 10 wherein creation of
the backup copy of the update agent code during the update of
firmware occurs proximate the beginning of the update.

12. The electronic device of claim 8, further comprising:

update information used by the update agent code to update

the firmware; and

wherein the update agent code explicitly creates the

backup copy of the update agent code when the update of
firmware is invoked, before conducting the update of the
firmware using the update package.

13. The electronic device of claim 8, wherein the boot code
determines which one of: the update agent code resident in the
non-volatile memory and the backup copy of the update agent
code is to be loaded into the random access memory (RAM)
based on at least one of: a predefined data sequence and a
checksum associated with each update agent code.

20

25

30

35

40

45

50

55

60

65

20

14. The electronic device of claim 13, wherein the boot
code communicates a parameter to the update agent code
loaded to the random access memory (RAM), the parameter
indicating that backup of the update agent code prior to updat-
ing of firmware by the update agent is to be performed.

15. The electronic device of claim 8, wherein the executed
update agent code causes removal of the backup copy of the
update agent code proximate the end of updating of firmware.

16. The electronic device of claim 15, wherein the executed
update agent code terminates updating of firmware without
removing the backup copy of the update agent code, if at least
one of: the update information is corrupt and the updating of
firmware is not successful.

17. The electronic device of claim 16, wherein:

the non-volatile memory comprises NAND-based non-

volatile memory; the boot code loads firmware, includ-
ing update agent code, from nonvolatile memory into
random access memory (RAM) for execution;

the boot code determines which one of: update agent code

in random access memory (RAM) and the backup copy
of update agent code in non-volatile memory is to be
used, and loads the determined one into an update agent
execution section in random access memory (RAM);
and

the boot code causing execution of code loaded into the

update agent execution section in random access
memory (RAM).

18. The electronic device of claim 16, wherein:

the non-volatile memory comprises NOR-based non-vola-

tile memory;
the boot code determines which one of: update agent code
in non-volatile memory and the backup copy of update
agent code in non-volatile memoiy is to be used, and
loads the determined one into RAM for execution; and

the boot code causing execution of update agent code
loaded in the random access memory (RAM).

19. An updatable electronic device comprising:

non-volatile memory containing resident update agent

code and a firmware;

wherein the resident update agent code is executable by a

processor to cause updating of the firmware in the non-
volatile memory;

wherein the resident update agent code is executable by a

processor to cause updating of the resident update agent
code;

wherein execution of the resident update agent code creates

a backup copy of the resident update agent code in the
non-volatile memory, before updating the firmware and
the resident update agent code, and only if an obtained
update package indicates that the obtained update pack-
age affects the resident agent code itself; and

wherein execution of the resident update agent code to

update the firmware in the non-volatile memory com-

prises

running the backup copy of the resident update agent
code to update the firmware, if the backup copy ofthe
resident update agent code exists and is valid; and

running the resident update agent code to update the
firmware, if the backup copy does not exist.

20. The updatable electronic device of claim 19 wherein
the resident update agent code in non-volatile memory is
located in a portion of non-volatile memory, the portion com-
prising validation information for identifying the resident
update agent code.

US 7,971,199 B1

21

21. The updatable electronic device of claim 20 wherein
the validation information comprises a predefined sequence
of data, a checksum, and a version string.

22. The updateable electronic device of claim 21, further
comprising:

first update status data comprising state information of an

update activity; wherein the resident update agent code

22

updates the resident update agent code to produce new

update agent code that employs second update status

data; and

wherein the new update agent code is capable of
employing the first update status data as well as the
second update status data.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,971,199 Bl Page 1 of 1
APPLICATION NO. : 117120556

DATED : June 28, 2011

INVENTORC(S) : Shao-Chun Chen et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In column 20, line 35, in Claim 18, delete “memoiy” and insert -- memory --, therefor.

In column 21, line 4, in Claim 22, delete “updateable™ and insert -- updatable --, therefor.

Signed and Sealed this

David J. Kappos
Director of the United States Patent and Trademark Office

