a2 United States Patent

Chen et al.

US007367027B1

(10) Patent No.: US 7,367,027 B1
45) Date of Patent: *Apr. 29, 2008

(54)

(735)

(73)

")

@
(22)

(60)

(1)

(52)

(58)

(56)

SYSTEM FOR GENERATING EFFICIENT
AND COMPACT UPDATE PACKAGES

Inventors: Shao-Chun Chen, Aliso Viejo, CA
(US); James P. Gustafson, Irvine, CA
(US); Jerry Barber, Renton, WA (US)

Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 614 days.

This patent is subject to a terminal dis-

claimer.
Appl. No.: 10/646,319

Filed: Aug. 22, 2003

Related U.S. Application Data

Provisional application No. 60/447,977, filed on Feb.
18, 2003, provisional application No. 60/441,867,
filed on Jan. 22, 2003, provisional application No.
60/415,620, filed on Oct. 2, 2002, provisional appli-
cation No. 60/405,253, filed on Aug. 22, 2002.

Int. Cl1.

GO6F 9/44 (2006.01)

GO6F 12/00 (2006.01)

US.CL ... 717/168; 717/169; 717/170;

Field of Classification Search

References Cited

707/203

:711/162

........ 717/168-172,
717/140-143
See application file for complete search history.

U.S. PATENT DOCUMENTS

5442771 A 8/1995 Filepp et al. 395/650
5,479,637 A 12/1995 Lisimaque et al. 395/430
5,579,522 A 11/1996 Christeson et al. 395/652
5,596,738 A 171997 Pope ..coeevevvuniinineeneee 395/430
5,598,534 A 1/1997 Haas 395/200.09
5,608,910 A 3/1997 Shimakura 395/670
5,623,604 A 4/1997 Russell et al. . 395/200.1
5,628,016 A * 5/1997 Kukol ..cccoevvevevvivreennnne 717/140
5,666,293 A 9/1997 Metz et al. 395/200.5
5,752,039 A 5/1998 Tanimura 395/712
5,778,440 A 7/1998 Yiu et al.ooevveennennn. 711/154
(Continued)
FOREIGN PATENT DOCUMENTS
CA 2339923 3/2000
(Continued)

OTHER PUBLICATIONS

“Focus on OpenView A guide to Hewlett-Packard’s Network and
Systems Management Platform”, Nathan J. Muller, pp. 1-291, CBM
Books, published 1995.

(Continued)

Primary Examiner—Mary Steelman

(57) ABSTRACT

A system for generating efficient and compact update pack-
ages makes it possible to process a source binary image of
software/firmware for an electronic device and a target
binary image in order to generate a compact update package.
It generates bubbles information that is optionally packaged
with the generated update package. Together, the bubbles
information and the update package, when delivered to an
electronic device, facilitate the upgrade of the electronic
device to a new or different version. The system for gener-
ating efficient and compact update packages selectively
employs residue generation/computation and entropy com-
putation, in addition to other techniques, in order to make the
update package more compact.

318

Generate
Bubble
information

Apply
Bubble to K
Cortigure | Source 319
image

4,493,083 A * 1/1985 Kinoshitaccccccceeeeeet 714/22
5,261,055 A 11/1993 Moran et al. 395/275 33 Claims, 3 Drawing Sheets
Start
307
Parse map 308
o bol
“Hosana 5
309“5\ dis:’ar:zzeﬁle
G o
Splitthe
dis fil
3115 | o ona or S:d‘gg;
more parts Package
and Bubble
t Information X 323
Ver
S }
Cenerate
Update
Package 321

!

US 7,367,027 B1

Page 2
U.S. PATENT DOCUMENTS 2002/0131404 Al 9/2002 Mehta et al. 370/352
2002/0152005 Al 10/2002 Bagnordi 700/234
5,790,974 A 8/1998 Tognazzini 701/204 2002/0156863 Al 10/2002 Pengcccocovevvernennen. 709/217
5,878,256 A 3/1999 Bealkowski et al. 395/652 2002/0157090 Al 10/2002 Anton, JI. «.ocoveveeerenn.. 717/178
5,960,445 A 9/1999 Tamori et al. 707/203 2003/0033599 Al 2/2003 Rajaram et al. 717173
6,009,497 A 12/1999 Wells et al. 711/103 2003/0037075 Al 2/2003 Hannigan et al. 707/500
6,038,636 A 3/2000 Brown, Il et al. 711/103 2003/0061384 Al 3/2003 Nakatani 709/245
6,064,814 A 5/2000 Capriles et al. 395/701
6,073,206 A 6/2000 Piwonka et al. 711/102 FOREIGN PATENT DOCUMENTS
6,073,214 A 6/2000 Fawcett 711/133
6,088,759 A 7/2000 Hasbun et al 711/103 p 8202626 8/1996
6,105,063 A 8/2000 Hayes, Jr. 709/223 KR 2002-0034228 5/2000
6,112,024 A 8/2000 Almond et al. ... 395/703 KR 2001-0100328 11/2001
6,112,197 A 8/2000 Chatterjee et al. 707/3
6,126,327 A 10/2000 Bietal. ... 395/200.51 OTHER PUBLICATIONS
6,128,695 A 10/2000 Estakhri et al. . 711/103
6,157,559 A 12/2000 YOO evevriiriinneeeriiiinnns 365/52 “Client Server computing in mobile environments”, J. Jing et al,
6,163,274 A 12/2000 Lindgren 340/825.44 ACM Computing Surveys, vol. 31, Issue 2, pp. 117-159, ACM
6,198,946 Bl 3/2001 Shin et al. 455/561 Press, Jul. 1999.
6,279,153 Bl 8/2001 Bietal. 71711 “ESW4: enhanced scheme for WWW computing in wireless com-
6,311,322 B1 10/2001 Ikeda et al. 7171 munication environments”, S. Hadjiefthymiades, et al, ACM
6,438,585 B2 8/2002 Mousseau et al. 709/206 SIGCOMM Computer Communication Review, vol. 29, Issue 5, pp.
6,675,382 B1* 1/2004 Foster 717177 24-35, ACM Press, Oct. 1999.
6,728,950 B2* 4/2004 Davis et al. ... - T17/136 “Introducing quality-of-service and traffic classes in wireless mobile
6,968,543 B2* 11/2005 Takahara et al. 717/140 networks”, J. Sevanto, et al, Proceedings of the 1°* ACM interna-
7,069,545 B2* 6/2006 Wang et al. 7177131 tional workshop on Wireless mobile multimedia, pp. 21-29, ACM
2001/0029178 Al 10/2001 Criss et al. 455/419 Press, 1998.
2001/0047363 Al 11/2001 Peng 707/104.1 “Any Network, Any Terminal, Anywhere”, A. Fasbender et al, [IEEE
2001/0048728 Al 12/2001 Peng ... 375/354 Personal Communications, Apr. 1999, pp. 22-30, IEEE Press, 1999.
2002/0078209 Al 6/2002 Pengco...... 709/227
2002/0116261 Al 8/2002 Moskowitz et al. 705/14 * cited by examiner

U.S. Patent Apr. 29,2008 Sheet 1 of 3 US 7,367,027 Bl

Parser f‘1 05

I —d
109 _§~} BubbleGen <—»1 Config

1 e
Bubb Predi
113 ler 4-»‘ redlctor]
-
5

i 12ﬁ7 1

107

Residue Update
117 (] Processing Package P19
Unit Output
Generator
123

Fig. 1

U.S. Patent Apr. 29,2008 Sheet 2 of 3 US 7,367,027 Bl

{205

Parser
207f

!

2og S BubbleGen {1 Config

I 211(—)

213 | Bubbler je——p Predictor

G

215
Residue Update
217_{ Processing Package
Unit Output 37219

1

221 | Entropy
Catqulator

Compression | 53

Generator

Fig. 2

U.S. Patent

Apr. 29,2008 Sheet 3 of 3 US 7,367,027 B1
Start
307“5\ t
Parse map
and symbol {305
files and
create
309~ distance file
End
I 325
Split the t
distance file _
3115 into one or 8;’;2‘:;
more parts Package
and Bubble o~
Information PP 323
1 Verify
313 Distance
I Generate
Undate
‘_5\
Generate Package 821
315 Bubble
Information
t Apply
Bubble to s
S1TS5™Y Configure |eg——p| Source 319
image

Fig. 3

US 7,367,027 Bl

1

SYSTEM FOR GENERATING EFFICIENT
AND COMPACT UPDATE PACKAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS/INCORPORATION BY
REFERENCE

This patent application makes reference to, claims priority
to and claims the benefit from U.S. Provisional Patent
Application Ser. No. 60/405,253, entitled “Firmware Update
Network And Process Employing Preprocessing Tech-
niques,” filed on Aug. 22, 2002, U.S. Provisional Patent
Application Ser. No. 60/415,620, entitled “System for Gen-
erating Efficient And Compact Update Packages,” filed on
Oct. 2, 2002, U.S. Provisional Patent Application Ser. No.
60/441,867, entitled “Mobile Handset Update Package Gen-
erator That Employs Nodes Technique,” filed on Jan. 22,
2003, and U.S. Provisional Patent Application Ser. No.
60/447,977, entitled “Update Package Generator Employing
Partial Predictive Mapping Techniques For Generating
Update Packages For Mobile Handsets,” filed on Feb. 18,
2003.

The complete subject matter of each of the above-refer-
enced United States patent applications is hereby incorpo-
rated herein by reference, in its entirety. In addition, this
application makes reference to U.S. Provisional Patent
Application Ser. No. 60/249,606, entitled “System and
Method for Updating and Distributing Information,” filed
Nov. 17, 2000, and International Patent Application Publi-
cation No. WO 02/41147 Al, entitled “Systems And Meth-
ods For Updating And Distributing Information,” publica-
tion date Mar. 23, 2002, the complete subject matter of each
of which is hereby incorporated herein by reference, in its
entirety.

This application is also related to the following co-
pending applications, the complete subject matter of each of
which is hereby incorporated herein by reference in its
entirety:

Ser. No. Title Filed Inventors
10/646,324 Firmware Update Network Aug. 21, 2003 Chen
and Process Employing Gustafson
Preprocessing Techniques
10/646,230 Mobile Handset Update Aug. 21, 2003 Chen
Package Generator That
Employs Nodes Technique
10/646,975 Update Package Generator Aug. 21,2003 Lilley

Employing Partial Predictive
Mapping for Generating
Update Packages for Mobile
Handsets

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

[Not Applicable]
MICROFICHE/COPYRIGHT REFERENCE
[Not Applicable]
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the generation

of update packages for software and firmware, and, more
specifically, to the techniques employed in generating com-

20

25

30

35

40

45

50

55

60

65

2

pact and efficient update packages that can be used to
upgrade software/firmware from one version to another.

2. Background of the Art

Electronic devices, such as mobile phones and personal
digital assistants (PDAs), often contain firmware and appli-
cation software either provided by the manufacturer of the
electronic devices, by telecommunication carriers, or by
third parties. The firmware and application software often
contain software bugs. New versions of the firmware and
software are periodically released to fix the bugs or to
introduce new features, or both. There is a fundamental
problem in providing access to new releases of firmware and
software. The electronic devices are often constrained in
terms of resources, such as available memory. Attempts to
upgrade firmware or software by end-users often result in
making the device, or some features of the device inoper-
able. Specifically, changing firmware in electronic devices
requires a great deal of caution as unsuccessful attempts may
make the device inoperable. Also, attempts to upgrade
firmware and/or software in constrained devices may be
hampered by limited user interaction capabilities and slow
communication speeds on these devices. In addition, deter-
mination of the version of firmware or software that may
currently be executed on the electronic devices may not be
an easy task, especially if such determination must be made
with minimal end-user interaction.

When an electronic device manufacturer/supplier wants
to upgrade an electronic device user’s executable applica-
tions, a binary difference file may be distributed from the
supplier to the user. The user may then update the executable
image with that difference file. Often, the changes required
for the upgrade may be small, however, the binary difference
file may be very large, and that may cause problems during
the upgrading process.

Further limitations and disadvantages of conventional and
traditional approaches will become apparent to one of ordi-
nary skill in the art through comparison of such systems with
the present invention as set forth in the remainder of the
present application with reference to the drawings.

BRIEF SUMMARY OF THE INVENTION

Aspects of the present invention may be seen in a method
for generating efficient and compact update packages in a
generation system that comprises a parser for generating
distance files between the source image and the target image;
a bubble generator for generating bubbles; a configuration
manager for facilitating configuration of the memory of the
electronic device; a bubble layout manager for modifying
the source image to look similar to the target image, the
bubble layout manager having a bubbler and a predictor for
aligning objects between the source and target images; and
a generator for generating update packages, the generator
having a residue processing unit for minimizing the number
of instructions requiring large spaces in the update package,
and an update package output for generating the update
package. The system may further comprise a an entropy
calculator for calculating the entropy of a segment of data,
and a compression unit for facilitating compression of the
update package. The method for generating efficient and
compact update packages may involve determining files for
the source image and the target image; parsing the deter-
mined files for the source image and the target image to
create distance files for the images; splitting the distance
files into one or more parts; verifying the distances deter-
mined between the source image and the target image;
generating bubble information; configuring the bubble infor-

US 7,367,027 Bl

3

mation according to configuration settings; applying the
bubble information to the source image; generating an
update package; and outputting the update package and the
bubble information.

These and other features and advantages of the present
invention may be appreciated from a review of the following
detailed description of the present invention, along with the
accompanying figures in which like reference numerals refer
to like parts throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of an example of a
system for generating efficient and compact update pack-
ages, in accordance with an embodiment of the present
invention.

FIG. 2 illustrates a block diagram of an example of a
generator for generating efficient and compact update pack-
ages, in accordance with an embodiment of the present
invention.

FIG. 3 illustrates a block diagram of an example of a flow
model for generating efficient and compact update packages,
in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 illustrates a block diagram of an example of a
system for generating efficient and compact update packages
105, in accordance with an embodiment of the present
invention. The system 105 comprises a parser 107, a bubble
generator 109, a configuration manager 111, a bubble layout
manager 121, and a generator 123. The bubble layout
manager 121 comprises a bubbler 113 and a predictor 115.
The generator 123 comprises a residue processing unit 117
and an update package output 119.

The parser 107 may be used for parsing “elf” files or
executable images to determine the location of symbols and
values of offsets for branch-link instructions, load instruc-
tions, pointers, etc. The parser 107 may be employed to
generate distance files or “.dist” files. A distance file contains
“distance values” of a source image and a target image of a
firmware/software of an electronic device, where the target
image may be an updated or upgraded version of the source
image of the firmware/software.

In one embodiment, the parser 107 may be employed to
pre-process map or “map” files and symbol or “.sym” files
to generate “.dist” files. Hence, “.dist” files may be gener-
ated for both the source and the target binary images of
firmware/software of an electronic device.

The bubble generator 109 may then process the “.dist”
files generated for the source and the target images by the
parser 107. The bubble generator 109 may then output a list
of bubbles into a bubbles file. The list of bubbles may
contain “Worm” bubbles, indicating a growth in the size of
objects, functions, and/or sections of memory in the target
image in comparison with the corresponding object or
function in the source image of firmware/software. The list
of bubbles may also contain “Black” bubbles, indicating a
reduction in the size of objects, functions, and/or sections of
memory in the target image in comparison with the corre-
sponding object or function in the source image of firmware/
software.

In one embodiment, the bubble generator 109 may pro-
cess the “.dist” files generated for the source and the target
images by the parser 107, to generate configuration or “.cfg”
files. The bubble generator 109 may employ one or more

20

25

30

35

40

45

50

55

60

65

4

“.dist” files, one for each type of memory component in an
electronic device, such as ROM, RAM, FLASH, etc. The
bubble generator 109 may then generate a single output file,
for example “bubbles.cfg.”

The configuration manager 111 facilitates the specifica-
tion of the configuration of the memory of the electronic
device on which the source and the target images of the
firmware/software may be executed. In one embodiment, the
configuration manager 111 may facilitate the generation of a
configuration file, or a “.cfg” file. The configuration file may
specify a number of configuration parameters including a
base address of the RAM, a top address+1 of the RAM (that
may be called RAMlimit), a top address+1 of the binary
image (that may be called IMAGElimit). The configuration
file may also specify a top address+1 of the code section that
may be required for some microprocessor architectures,
such as THUMB (that may be called CODElimit). In addi-
tion, the configuration file may specify a top address+1 of
the boot block (that may be called Bblimit), a base address
of ROM (that may be called ROMbase), an enable or disable
instruction disassembler indicator that may be called
ARMBDbI, etc.

The output of the bubble generator 109 may be processed
by the bubble layout manager 121. The bubble layout
manager 121 may process the source image of a firmware/
software for an electronic device, and may manipulate the
aforementioned source image to line up symbolic addresses,
such as addresses in branch links, pointers, etc. with corre-
sponding symbolic addresses in the target image of the
firmware/software for the electronic device. As a result, the
source image may be modified to look similar to the target
image, in preparation for the process of generating an update
package by the generator 123. The predictor 115 may be
employed to encapsulate platform-specific issues and plat-
form-specific processing. The predictor 115 may be utilized
to align objects or code in the source image with objects or
code in the target image. The predictor 115 may compare
bytes from the source image to bytes from the target image
to establish an alignment between the two images, or
between portions of the two images.

The generator 123 generates update packages that indicate
the difference between any two given versions of firmware/
software. The differences may be expressed using a set of
instructions and associated data. In one embodiment, the
system may utilize instructions such as CPY, DUP, SET,
SETR, and DEL, explained hereinafter.

In one embodiment, the generator 123 may process the
output of the bubble layout manager 121 to determine an
appropriate bank order of updates. The bank order may
contain the order in which sections of the objects or code
from the source and target images of the firmware/software
may be updated. The bank order may be determined based
on the order that may provide the most size-efficient update
package. Details regarding the significance of the bank order
choice are explained hereinafter.

Once the bank order is determined, the generator 123 may
generate the update package. While generating the update
package, the generator 123 may utilize the residue process-
ing unit 117 to minimize the number of SET and SETR
instructions used in the update package being generated. The
residue processing unit 117 may generate compact segments
of SET and SETR instructions that form a portion of a
generated update package for the firmware/software of the
electronic device. The update package output 119 may then
save the generated update package into a file, external
device, an output stream, etc.

US 7,367,027 Bl

5

The update package generated for a difference file may
include instructions such as, CPY, DUP, SET, SETR, and
DEL, as mentioned hereinabove. DUP may be used to
indicate that a specified number of bytes remain the same in
a target image from the source image of the firmware/
software. CPY may be used to indicate that a specified
number of bytes is the same as the preceding equal number
of bytes. DEL may be used to indicate that a specified
number of bytes in the source image may not appear in the
target image. SET and SETR are used to add new and
changed number of bytes into the target image that do not
occur in the source image. SET uses completely new infor-
mation to add to the image, whereas SETR may use an
existing segment of information. A benefit of using SETR is
that, depending on the stage of the generation process, SETR
may utilize a segment of information that appears in the
source image, the modified/updated source image, or the
target image. In such a case, the bank order may be con-
sidered. The order in which segments of the memory are
updated determines at any stage which segments are avail-
able as source, updated, or target. The order that provides the
optimal/minimal number of instructions, such as SET and
SETR, may be the optimal bank order.

FIG. 2 illustrates a block diagram of an example of a
generator 205 for generating efficient and compact update
packages, in accordance with an embodiment of the present
invention. The generator 205 comprises a parser 207, a
bubble generator 209, a configuration manager 211, a bub-
bler 213, a predictor 215, a residue processing unit 217, an
update package output 219, an entropy calculator 221, and
a compression unit 223. The preprocessing steps that may be
utilized to prepare the binary images of firmware/software
for the generation of an update package may include the
processing of binary files, such as “.bin” files, map files,
such as “.map” files, symbol files, such as “.sym” files, etc.
for both the source image and the target image.

In one embodiment, the preprocessing steps, that may be
conducted by the generator 205 may comprise generation of
binary files. Such binary files may include a binary image
file corresponding to the source binary image in addition to
bubbles that make it look similar to the target binary image.
Another binary file may be a binary image file that may
include preprocessing instructions in addition to the bubbles
used in updating the source image to the target image. The
generator 205 may subsequently process the source binary
image file that contains the bubbles or the source binary file
that contains the bubbles and the preprocessing instructions,
along with the target binary image file to generate an update
package.

The entropy calculator 221 may be employed by the
residue processing unit 217 to calculate the entropy of the
data associated with a set-buffer, which is a buffer of data
assembled from one or more SET or SETR instructions of an
update package. In one embodiment, the set-buffer may
contain the data associated with all SET and SETR instruc-
tions encountered during any given stage of the processing
by the generator 205. Based on the entropy calculated, the
residue processing unit 217 may select a SET instruction or
a SETR instruction to represent creation/duplication/modi-
fication of a current segment of a piece of code or module
within the firmware/software being processed.

In one embodiment, the entropy may be calculated by
calculating the frequency of occurrence of each byte in a
buffer, calculating the probability of each byte occurring,
and employing the frequency of occurrence and/or the
probability in an entropy function. The code fragment shown
below illustrates an example of an entropy calculation,

20

25

30

35

40

45

50

55

60

65

6

where prob is an array of calculated probabilities, and
probl[i] refers to an i” element in the array:

for (i=0; 1<256; i++)

{

entropy += (prob[i] != 0.0 ? prob[i] * log(1.0/probl[i] /

log(2.0) : 0.0);

Using the SET instruction usually yields high entropy
values, because it introduces a set of new values for a certain
number of bytes. However, an alternative embodiment may
reduce the entropy of the data introduced by the SET
instruction, and as a result offer a high compression rate to
make an update package more efficient. An alternative
embodiment may utilize subtracting SET data from corre-
sponding data in the source, and using the difference
between the target and source data instead of just the target
data. For example, the SET or target data may look like:

0x08 0x25 0xF2 0x04 0x08 0x26 0xF2 0x04 0x08 0x30
0x4A 0x0C 0x08 0x31 0x4A 0x0C

This pattern has moderate entropy and may offer a com-
pression rate near 2:1. The source data corresponding to the
SET or target data may look like:

0x08 0x25 0xF2 0x08 0x08 0x26 0xF2 0x08 0x08 0x30
0x4A 0x04 0x08 0x31 0x4A 0x04

The difference between the SET data and the source data
would look like:

0x00 O0x00 O0x00 OxFC 0x000x000x00 OxFC
0x000x000x000x080x000x000x000x08

In this case, the entropy of the difference is extremely low,
which may offer a much higher compression rate. Therefore,
it may be more desirable to use the SET instruction with the
difference data rather than the target data. This technique is
not limited to the SET instruction. In another case the SETR
instruction may offer better results by finding sections in the
source, modified, or target images that may provide the
smallest difference between sections of data, hence provid-
ing sequences with lower entropy and better compression
rates. Better results may be achieved by utilizing combina-
tions of SET and SETR instructions. A further enhancement
may compute the entropy before and after calculating the
residual for the different sections or segments of code and/or
data, and for each section or segment, saving the data with
the lowest entropy to the update package.

The compression unit 223 may facilitate compression of
update packages based on one or more compression tech-
niques. In one embodiment, the compression unit 223 may
provide support for zlib-based compression, as well as other
commercial compression techniques, such as L.Z compres-
sion, pkzip, etc. A high compression rate results in the
generation of more efficient update packages in a system.

The bubble information generated by the generator 205
may be packaged along with the update package in one
embodiment, or packaged separately from the generated
update package in another embodiment.

In one embodiment, the system may keep a “rough”
estimate of locations of sections of the source data where
evaluations of entropy values and compression may provide
better results. In one embodiment, a large fraction of SET
instructions may be preceded by a copy instruction, or CPY.
In such an embodiment, if a pointer into the source data is
kept for the last copy instruction, the matched SET data will
likely reside at that pointer location plus the size of the copy
instruction, i.e. the number of bytes of data copied. This
embodiment assumes locality of data.

FIG. 3 illustrates a block diagram of an example of a flow
model 305 for generating efficient and compact update

US 7,367,027 Bl

7

packages, in accordance with an embodiment of the present
invention. The flow model 305 shows exemplary steps of a
process for generating efficient and compact update pack-
ages utilizing bubbles information to make the update pack-
ages more compact and efficient. The exemplary process of
generating efficient and compact update packages starts at a
block 307 where map or “.map” files and/or symbol or
“sym” files for the source binary image of a firmware/
software and the target binary image of the firmware/
software may be determined. For instance, the “bin,”
“map,” and “.sym” files for both the source and target
images of the firmware/software may be identified and
accessed.

At a next block 309, the map and symbol files may be
parsed to create one or more distance or “.dist” files. Then,
at a next block 311, the distance files may be split, if
necessary, into one or more parts. These parts may corre-
spond to different sections of code or memory. For example,
if ROM, RAM, and IRAM sections are employed in the
source and target images, the distance files for each of these
memory sections may be separated and saved in different
files.

At block 313, the distances may be verified between the
source and target images. In one embodiment, each of the
distance files, if more than one exists (for example, a
distance file for the different sections of memory), may be
verified.

At block 315, bubble information may be generated.
When the bubble information is generated, the system may
utilize a preferred distance specified by a user or accessed
from a default configuration setting. The preferred distance
utilized may be computed based on heuristics. In one
embodiment, the bubble information generated may be
combined into one “.cfg” file, where the sequence of bubble
information may be based on the order of the addresses of
the various sections of memory of a binary image. For
example, if the memory map of an electronic device for the
source/target image, ordered from top to bottom, is ROM,
RAM, and IRAM, then the bubble information may be
arranged in that order.

Once the bubble information is generated in block 315,
the configuration information may be retrieved and pro-
cessed in a step illustrated by block 317. Later, at a next
block 319, the source image may be manipulated to make it
similar in appearance to the target image by applying the
bubble information generated in the earlier block 315. The
application of the bubble information to the source image
may be performed by a bubbler utilizing a predictor. Once
the bubble information is applied to the source image, the
update package may be generated in a next block 321. The
generation of the update package may also employ tech-
niques such as residue processing to make the generated
update package more compact and efficient. Additionally,
compression techniques may also be employed.

A next block 323 is where the update package and the
bubble information generated may be packaged together or
separately and outputted. In one embodiment, the update
package and the bubble information generated may be
packaged together and saved in a file. The process for
generating efficient and compact update packages then ends
at block 325.

The system for generating efficient and compact update
packages generates bubbles information that may be pack-
aged within the generated update package. The bubbles
information, included in the update package, when delivered
to an electronic device, facilitates the upgrade of the elec-
tronic device firmware/software to a new version.

20

25

30

35

40

45

50

55

60

65

8

While the present invention has been described with
reference to certain embodiments, it will be understood by
those skilled in the art that various changes may be made and
equivalents may be substituted without departing from the
scope of the present invention. In addition, many modifica-
tions may be made to adapt a particular situation or material
to the teachings of the present invention without departing
from its scope. Therefore, it is intended that the present
invention not be limited to the particular embodiment dis-
closed, but that the present invention will include all
embodiments falling within the scope of the appended
claims.

What is claimed is:

1. A system for generating efficient and compact update
packages for updating contents of memory in an electronic
device utilizing source and target images of the contents, the
system comprising:

at least one processor communicatively coupled to storage
containing code executable by the at least one proces-
sor, the code comprising:

a parser for generating distance files comprising distance
information representing location differences between
code or objects in the source image and the target
image;

a bubble generator for generating bubble information
from the distance information, the bubble information
representing addition and deletion of memory space
within the source image to more closely align the code
or objects in the source and target images;

a configuration manager for facilitating configuration of
memory elements of the electronic device;

a bubble layout manager for moditying the alignment of
the source image based on the target image, using the
bubble information; and

a generator for generating at least one update package
from the modified source image and the target image,
for processing in the electronic device to update the
memory.

2. The system according to claim 1 wherein the parser

preprocesses map files for generating the distance files.

3. The system according to claim 1 wherein the parser
preprocesses symbol files for generating the distance files.

4. The system according to claim 1 wherein the bubble
generator processes the distance files to generate a list of
bubbles.

5. The system according to claim 1 wherein the bubble
generator outputs a file containing a list of the generated
bubbles.

6. The system according to claim 1 wherein the parser
generates a plurality of distance files associated with a
plurality of memory components in the electronic device.

7. The system according to claim 6 wherein the bubble
generator processes the plurality of distance files to generate
a plurality of corresponding files containing bubbles infor-
mation.

8. The system according to claim 7 wherein the bubble
generator utilizes the plurality of files containing bubbles
information for generating an output file containing a por-
tion of the generated bubbles.

9. The system according to claim 1 wherein the bubble
layout manager comprises:

a bubbler; and

a predictor for aligning objects between the source and
target images.

10. The system according to claim 1 wherein the update

package comprises a set of instructions and data.

US 7,367,027 Bl

9

11. The system according to claim 10 wherein the gen-
erator comprises:

a residue processing unit for minimizing the number of
instructions in the update package; and an update
package output for generating the update package.

12. The system according to claim 1 wherein the genera-
tor determines an appropriate bank order of updates.

13. The system according to claim 12 wherein the appro-
priate bank order provides a more size-efficient update
package.

14. The system according to claim 12 wherein the appro-
priate bank order provides a lesser number of instructions in
the update package.

15. The system according to claim 1 wherein the system
further comprises:

an entropy calculator for calculating the entropy of a
segment of data; and

a compression unit for facilitating compression of the
update package.

16. The system according to claim 15 wherein the residue
processing unit utilizes the calculated entropy to select a set
of instructions to determine the update package.

17. The system according to claim 16 wherein the entropy
is calculated for different sets of instructions to determine
the instruction set yielding the smallest entropy value.

18. A method for generating efficient and compact update
packages for updating contents of memory in an electronic
device, utilizing source and target images of the contents, the
method comprising the steps of:

identifying files comprising code or objects of the source
image;

identifying files comprising code or objects of the target
image;

creating one or more distance files for the source and the
target images, the one or more distance files comprising
information representing differences of location of the
code or objects in the source and target images;

generating bubble information using the one or more
distance files, the bubble information representative of
addition and deletion of memory space within the
source image;

applying the bubble information to the source image to
create a modified source image in which the code or
objects more closely align with corresponding code or
objects in the target image;

generating an update package using the modified source
image and the target image; and

20

25

30

35

40

45

10

outputting the update package and the bubble information
to the electronic device for processing to update the
memory.

19. The method according to claim 18 wherein the iden-
tified files for the source and the target images are parsed to
create the distance files.

20. The method according to claim 18 wherein the dis-
tance files are split into at least two parts.

21. The method according to claim 20 wherein the dis-
tance files are split into parts corresponding to different
sections of code.

22. The method according to claim 18 further comprising
the step of verifying the distances between the source image
and the target image.

23. The method according to claim 18 wherein the bubble
information is configured according to configuration set-
tings.

24. The method according to claim 23 wherein the con-
figuration settings are specified by a user.

25. The method according to claim 23 wherein the con-
figuration settings are default configuration settings.

26. The method according to claim 18 wherein the dis-
tance files are split into parts corresponding to different
sections of memory.

27. The method according to claim 18 wherein the appli-
cation of the bubble information to the source image is
performed by a bubbler.

28. The method according to claim 27 wherein the bub-
bler utilizes a predictor.

29. The method according to claim 18 wherein the gen-
eration of the update package utilizes residue processing.

30. The method according to claim 18 wherein the gen-
eration of the update package utilizes compression.

31. The method according to claim 18 wherein the update
package and the bubble information are packaged together
and outputted.

32. The method according to claim 18 wherein the update
package and the bubble information are packaged and
outputted separately.

33. The method according to claim 18 wherein the update
package and the bubble information are packaged together
and saved in a file.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 17,367,027 Bl Page 1 of 1
APPLICATION NO. : 10/646319

DATED : April 29, 2008

INVENTORC(S) : Shao-Chun Chen et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

In column 6, line 27, delete “0x000x000x00” and insert -- 0x00 0x00 0x00 --,
therefor.

In column 6, line 28, delete “0x000x000x000x080x000x000x000x08"* and
insert -- 0x00 0x00 0x00 0x08 0x00 0x00 0x00 0x08 --, therefor.

Signed and Sealed this

Second Day of September, 2008

WD

JON W. DUDAS
Director of the United States Patent and Trademark Office

